Home
×

Slate
Slate

Coal
Coal



ADD
Compare
X
Slate
X
Coal

Slate vs Coal

Add ⊕
1 Definition
1.1 Definition
Slate is a fine-grained, foliated, homogeneous metamorphic rock derived from an original shale-type sedimentary rock composed of clay or volcanic ash through low-grade regional metamorphism
Coal is a combustible black or brownish-black sedimentary rock usually occurring in rock strata in layers called coal beds
1.2 History
1.2.1 Origin
England
USA
1.2.2 Discoverer
Unknown
John Peter Salley
1.3 Etymology
From Old French esclate, from esclat (French éclat)
From the Old English term col, which has meant mineral of fossilized carbon since the 13th century
1.4 Class
Metamorphic Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Foliated
Amorphous, Glassy
2.2 Color
Black, Brown, Buff, Green, Light to Dark Grey, Purple, Red, Shades of Blue
Black, Brown, Dark Brown, Grey, Light to Dark Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Dull
Veined or Pebbled
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Bathrooms, Decorative Aggregates, Entryways, Floor Tiles, Flooring, Homes, Hotels, Interior Decoration, Kitchens, Stair Treads
Not Yet Used
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
Not Yet Used
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone
Cement Manufacture, for Road Aggregate, Making natural cement, Steel Production
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Blackboards, Commemorative Tablets, Laboratory bench tops, Standard material for the bed of Billiard table, Standard material for the beds of Pool and Snooker table, Tombstones, Used in aquariums, Writing Slates
Alumina Refineries, Electricity Generation, Liquid Fuel, Manufacture of Soap, Solvents, Dyes, Plastics and Fibres, Paper Industry
4 Types
4.1 Types
Not Available
Peat, Lignite, Sub-Bituminous Coal, Bituminous Coal, Anthracite, Graphite
4.2 Features
Easily splits into thin plates, Surfaces are often shiny, Very fine grained rock
Helps in production of Heat and Electricity, Used as fossil fuel
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Slate is a low grade metamorphic rock that is generally formed by metamorphosis of mudstone or shale, under relatively low pressure and temperature conditions.
Coal forms from the accumulation of plant debris in a swamp environment which is buried by sediments such as mud or sand and then compacted to form coal.
5.2 Composition
5.2.1 Mineral Content
Apatite, Biotite, Chlorite, Feldspar, Graphite, Hematite, Kaolinite, Magnetite, Pyrite, Tourmaline, Zircon
Analcime, Apatite, Barite, Calcite, Chalcopyrite, Chlorite, Chromite, Clausthalite, Clay Minerals, Crandallite Group, Dolomite, Feldspar, Galena, Gypsum, Marcasite, Muscovite or Illite, Pyrite, Quartz, Siderite, Sphalerite, Zircon
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
Carbon, Hydrogen, Nitrogen, Oxygen, Sulphur
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Not Applicable
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Coastal Erosion, Glacier Erosion, Water Erosion, Wind Erosion
Not Applicable
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3-4
1-1.5
6.1.2 Grain Size
Very fine-grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Splintery
Conchoidal
6.1.4 Streak
Light to dark brown
Black
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Dull
Dull to Vitreous to Submetallic
6.1.7 Compressive Strength
Flint
30.00 N/mm2
Rank: 30 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Slaty
Non-Existent
6.1.9 Toughness
1.2
Not Available
6.1.10 Specific Gravity
2.65-2.8
1.1-1.4
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.6-2.8 g/cm3
1100-1400 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.76 kJ/Kg K
Rank: 17 (Overall)
1.32 kJ/Kg K
Rank: 4 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Turkey
Bangladesh, Burma, Cambodia, China, India, Indonesia, Kazakhstan, Malaysia, Mongolia, Pakistan, Turkey, Vietnam
7.1.2 Africa
Not Yet Found
Botswana, Kenya, Morocco, Mozambique, South Africa, Tanzania
7.1.3 Europe
Belgium, France, Germany, Italy, Norway, Portugal, Spain, United Kingdom
Belgium, Bulgaria, England, France, Germany, Greece, Hungary, Kosovo, Netherlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, The Czech Republic, Ukraine, United Kingdom
7.1.4 Others
Arctic
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, Mexico, USA
7.2.2 South America
Brazil
Brazil, Chile, Colombia, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New South Wales, Queensland, Victoria

Slate vs Coal Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Slate and Coal Reserves. Slate is a fine-grained, foliated, homogeneous metamorphic rock derived from an original shale-type sedimentary rock composed of clay or volcanic ash through low-grade regional metamorphism. Coal is a combustible black or brownish-black sedimentary rock usually occurring in rock strata in layers called coal beds. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Slate vs Coal information and Slate vs Coal characteristics in the upcoming sections.

Slate vs Coal Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Slate vs Coal characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Slate and Properties of Coal. Learn more about Slate vs Coal in the next section. The interior uses of Slate include Bathrooms, Decorative aggregates, Entryways, Floor tiles, Flooring, Homes, Hotels, Interior decoration, Kitchens and Stair treads whereas the interior uses of Coal include Not yet used. Due to some exceptional properties of Slate and Coal, they have various applications in construction industry. The uses of Slate in construction industry include As dimension stone and that of Coal include Cement manufacture, For road aggregate, Making natural cement, Steel production.

More about Slate and Coal

Here you can know more about Slate and Coal. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Slate and Coal consists of mineral content and compound content. The mineral content of Slate includes Apatite, Biotite, Chlorite, Feldspar, Graphite, Hematite, Kaolinite, Magnetite, Pyrite, Tourmaline, Zircon and mineral content of Coal includes Analcime, Apatite, Barite, Calcite, Chalcopyrite, Chlorite, Chromite, Clausthalite, Clay Minerals, Crandallite Group, Dolomite, Feldspar, Galena, Gypsum, Marcasite, Muscovite or Illite, Pyrite, Quartz, Siderite, Sphalerite, Zircon. You can also check out the list of all Metamorphic Rocks. When we have to compare Slate vs Coal, the texture, color and appearance plays an important role in determining the type of rock. Slate is available in black, brown, buff, green, light to dark grey, purple, red, shades of blue colors whereas, Coal is available in black, brown, dark brown, grey, light to dark grey colors. Appearance of Slate is Dull and that of Coal is Veined or Pebbled. Properties of rock is another aspect for Slate vs Coal. The hardness of Slate is 3-4 and that of Coal is 1-1.5. The types of Slate are Not Available whereas types of Coal are Peat, Lignite, Sub-Bituminous Coal, Bituminous Coal, Anthracite, Graphite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Slate is light to dark brown while that of Coal is black. The specific heat capacity of Slate is 0.76 kJ/Kg K and that of Coal is 1.32 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Slate is heat resistant, impact resistant, pressure resistant, wear resistant whereas Coal is heat resistant.