Home
×

Shonkinite
Shonkinite

Latite
Latite



ADD
Compare
X
Shonkinite
X
Latite

Shonkinite vs Latite

Add ⊕
1 Definition
1.1 Definition
Shonkinite is a rare, dark-coloured and intrusive igneous rock which contains augite and orthoclase feldspar as its primary constituents
Latite is an igneous, volcanic rock, with aphanitic-aphyric to aphyric-porphyritic texture
1.2 History
1.2.1 Origin
USA
Italy
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From the name of Shonkin Sag ranges in the Highwood Mountains of north-central Montana, US
From the Latin word latium
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy
Aphanitic to Porphyritic
2.2 Color
Brown, Buff, Cream, Green, Grey, Pink, White
Black, Brown, Colourless, Green, Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Banded and Foilated
Rough
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Flooring, Homes, Interior Decoration
Decorative Aggregates, Entryways, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Creating Artwork
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Metallurgical Flux, Soil Conditioner, Source of Magnesia (MgO)
4 Types
4.1 Types
Not Available
Rhomb porphyries
4.2 Features
Available in Lots of Colors and Patterns, Is one of the oldest rock, Matrix variable
Host Rock for Lead
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Shonkinites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.
Latite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz
Alkali feldspar, Biotite, Plagioclase, Pyroxene
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
CaO, Cl, MgO
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Sea Erosion, Water Erosion
Chemical Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5.5-6
5-5.5
6.1.2 Grain Size
Medium to Fine Coarse Grained
Fine Grained
6.1.3 Fracture
Not Available
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Very Less Porous
6.1.6 Luster
Subvitreous to Dull
Subvitreous to Dull
6.1.7 Compressive Strength
Flint
150.00 N/mm2
Rank: 14 (Overall)
310.00 N/mm2
Rank: 2 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Perfect
6.1.9 Toughness
Not Available
2.7
6.1.10 Specific Gravity
2.6-2.7
2.86
6.1.11 Transparency
Opaque
Translucent
6.1.12 Density
2.6-2.8 g/cm3
2.8-2.9 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Wear Resistant
Heat Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
Not Yet Found
7.1.2 Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
Not Yet Found
7.1.3 Europe
Bulgaria, England, Germany, Norway, Romania, Switzerland
Bulgaria
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
USA
7.2.2 South America
Brazil, Chile
Not Yet Found
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Queensland, South Australia, Western Australia
Not Yet Found

Shonkinite vs Latite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Shonkinite and Latite Reserves. Shonkinite is a rare, dark-coloured and intrusive igneous rock which contains augite and orthoclase feldspar as its primary constituents. Latite is an igneous, volcanic rock, with aphanitic-aphyric to aphyric-porphyritic texture. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Shonkinite vs Latite information and Shonkinite vs Latite characteristics in the upcoming sections.

Shonkinite vs Latite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Shonkinite vs Latite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Shonkinite and Properties of Latite. Learn more about Shonkinite vs Latite in the next section. The interior uses of Shonkinite include Decorative aggregates, Flooring, Homes and Interior decoration whereas the interior uses of Latite include Decorative aggregates, Entryways and Interior decoration. Due to some exceptional properties of Shonkinite and Latite, they have various applications in construction industry. The uses of Shonkinite in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories and that of Latite include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories.

More about Shonkinite and Latite

Here you can know more about Shonkinite and Latite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Shonkinite and Latite consists of mineral content and compound content. The mineral content of Shonkinite includes Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz and mineral content of Latite includes Alkali feldspar, Biotite, Plagioclase, Pyroxene. You can also check out the list of all Igneous Rocks. When we have to compare Shonkinite vs Latite, the texture, color and appearance plays an important role in determining the type of rock. Shonkinite is available in brown, buff, cream, green, grey, pink, white colors whereas, Latite is available in black, brown, colourless, green, grey, pink, white colors. Appearance of Shonkinite is Banded and Foilated and that of Latite is Rough. Properties of rock is another aspect for Shonkinite vs Latite. The hardness of Shonkinite is 5.5-6 and that of Latite is 5-5.5. The types of Shonkinite are Not Available whereas types of Latite are Rhomb porphyries. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Shonkinite and Latite is white. The specific heat capacity of Shonkinite is 0.92 kJ/Kg K and that of Latite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Shonkinite is heat resistant, impact resistant, wear resistant whereas Latite is heat resistant, pressure resistant.

Let Others Know
×