Home
×

Serpentinite
Serpentinite

Ignimbrite
Ignimbrite



ADD
Compare
X
Serpentinite
X
Ignimbrite

Serpentinite vs Ignimbrite

1 Definition
1.1 Definition
A hydration and metamorphic transformation of ultramafic rock from the Earth's mantle is called as serpentinization, a group of minerals is formed by serpentinization compose rock 'serpentinite'.
Ignimbrite is a volcanic rock consisting mainly of pumice fragments, formed by the consolidation of material deposited by pyroclastic flows
1.2 History
1.2.1 Origin
USA
New Zealand
1.2.2 Discoverer
Unknown
Patrick Marshall
1.3 Etymology
From English word serpentinization.
From Latin ignis fire + imber, imbr- shower of rain, storm cloud + -ite
1.4 Class
Metamorphic Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy
Aphanitic
2.2 Color
Black, Brown, Colourless, Green, Grey, White
Beige, Black, Brown, Grey, Pink, White
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Rough and Dull
Dull, Vesicular and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, Garden Decoration, Office Buildings, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement
Building houses or walls, Construction Aggregate
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Commemorative Tablets, Creating Artwork
Cemetery Markers, Commemorative Tablets, Creating Artwork
4 Types
4.1 Types
Jadeitite
Not Available
4.2 Features
Host Rock for Lead
Always found as volcanic pipes over deep continental crust
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Due to change in environmental conditions, rocks are heated and pressurized deep inside the Earth's surface. Serpentinite is formed from the extreme heat caused by magma or by the intense collisions and friction of tectonic plates.
Ignimbrites are formed from very poorly sorted mixture of volcanic ash or tuff and pumice lapilli, commonly with scattered lithic fragments.
5.2 Composition
5.2.1 Mineral Content
Carbonate, Magnetite, Pyrrhotite, Serpentine, Sulfides
Apatite, Biotite, Calcite, Chlorite, Feldspar, Hematite, Hornblade, Ilmenite, Magnetite, Olivine, Pyroxene, Quartz
5.2.2 Compound Content
Ca, CaO, Carbon Dioxide, KCl, MgO, Sulfur Dioxide, Sulphur
Ca, NaCl
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism
Burial Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Not Applicable
Biological Weathering, Chemical Weathering
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3-5
4-6
6.1.2 Grain Size
Very fine-grained
Fine Grained
6.1.3 Fracture
Uneven
Uneven
6.1.4 Streak
White, Greenish White or Grey
White
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Waxy and Dull
Vitreous to Dull
6.1.7 Compressive Strength
Flint
310.00 N/mm2
Rank: 2 (Overall)
243.80 N/mm2
Rank: 5 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Irregular
Not Available
6.1.9 Toughness
7
Not Available
6.1.10 Specific Gravity
2.79-3
2.73
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.5-3 g/cm3
1-1.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.95 kJ/Kg K
Rank: 9 (Overall)
0.20 kJ/Kg K
Rank: 25 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Saudi Arabia, Singapore, South Korea
Afghanistan, Armenia, Azerbaijan, Burma, Cambodia, China, India, Indonesia, Iran, Japan, Malaysia, Mongolia, Nepal, North Korea, Pakistan, Saudi Arabia, Syria, Taiwan, Thailand, Turkey, Vietnam, Yemen
7.1.2 Africa
Ethiopia, Western Africa
Cameroon, Cape Verde, Chad, Djibouti, Eritrea, Ethiopia, Kenya, Libya, Madagascar, Nigeria, Rwanda, South Africa, Sudan, Tanzania, Uganda
7.1.3 Europe
England, Georgia, Switzerland, United Kingdom
France, Georgia, Germany, Greece, Iceland, Italy, Netherlands, Poland, Portugal, Spain, United Kingdom
7.1.4 Others
Not Yet Found
Antarctica, Hawaii Islands
7.2 Deposits in Western Continents
7.2.1 North America
Canada
Canada, Costa Rica, Panama, USA
7.2.2 South America
Colombia
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, New South Wales, New Zealand, Western Australia
Central Australia, Western Australia

Serpentinite vs Ignimbrite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Serpentinite and Ignimbrite Reserves. A hydration and metamorphic transformation of ultramafic rock from the Earth's mantle is called as serpentinization, a group of minerals is formed by serpentinization compose rock 'serpentinite'.. Ignimbrite is a volcanic rock consisting mainly of pumice fragments, formed by the consolidation of material deposited by pyroclastic flows. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Serpentinite vs Ignimbrite information and Serpentinite vs Ignimbrite characteristics in the upcoming sections.

Serpentinite vs Ignimbrite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Serpentinite vs Ignimbrite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Serpentinite and Properties of Ignimbrite. Learn more about Serpentinite vs Ignimbrite in the next section. The interior uses of Serpentinite include Decorative aggregates and Interior decoration whereas the interior uses of Ignimbrite include Decorative aggregates, Floor tiles, Homes and Interior decoration. Due to some exceptional properties of Serpentinite and Ignimbrite, they have various applications in construction industry. The uses of Serpentinite in construction industry include As dimension stone, Cement manufacture, For road aggregate, Making natural cement and that of Ignimbrite include Building houses or walls, Construction aggregate.

More about Serpentinite and Ignimbrite

Here you can know more about Serpentinite and Ignimbrite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Serpentinite and Ignimbrite consists of mineral content and compound content. The mineral content of Serpentinite includes Carbonate, Magnetite, Pyrrhotite, Serpentine, Sulfides and mineral content of Ignimbrite includes Apatite, Biotite, Calcite, Chlorite, Feldspar, Hematite, Hornblade, Ilmenite, Magnetite, Olivine, Pyroxene, Quartz. You can also check out the list of all Metamorphic Rocks. When we have to compare Serpentinite vs Ignimbrite, the texture, color and appearance plays an important role in determining the type of rock. Serpentinite is available in black, brown, colourless, green, grey, white colors whereas, Ignimbrite is available in beige, black, brown, grey, pink, white colors. Appearance of Serpentinite is Rough and Dull and that of Ignimbrite is Dull, Vesicular and Foilated. Properties of rock is another aspect for Serpentinite vs Ignimbrite. The hardness of Serpentinite is 3-5 and that of Ignimbrite is 4-6. The types of Serpentinite are Jadeitite whereas types of Ignimbrite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Serpentinite and Ignimbrite is white, greenish white or grey. The specific heat capacity of Serpentinite is 0.95 kJ/Kg K and that of Ignimbrite is 0.20 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Serpentinite is heat resistant whereas Ignimbrite is heat resistant, impact resistant, pressure resistant, wear resistant.