Home
×

Scoria
Scoria

Lamprophyre
Lamprophyre



ADD
Compare
X
Scoria
X
Lamprophyre

Scoria vs Lamprophyre

1 Definition
1.1 Definition
Scoria is a dark-colored extrusive igneous rock with abundant round bubble-like cavities
Lamprophyre is uncommon igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks and small intrusions
1.2 History
1.2.1 Origin
Unknown
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From late Middle English (denoting slag from molten metal), from Greek skōria refuse, from skōr dung
From Greek lampros bright and shining + porphureos purple
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Plutonic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Vesicular
Porphyritic
2.2 Color
Black, Brown, Dark Grey to Black, Red
Black, Bluish - Grey, Brown, Dark Greenish - Grey, Green, Grey
2.3 Maintenance
More
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Glassy and Vesicular
Dull, Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Decorative Aggregates, Interior Decoration
3.1.2 Exterior Uses
Garden Decoration, Paving Stone
As Building Stone, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
Cement Manufacture, Construction Aggregate, for Road Aggregate, In landscaping and drainage works
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Not Yet Used
Taken as a Supplement for Calcium or Magnesium
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
As a traction material on snow-covered roads, Creating Artwork, High-temperature insulation, In gas barbecue grills
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
4 Types
4.1 Types
Not Available
Minette, Alnoite, Camptonite, Monchiquite, Fourchite, Vogesite, Appinite and Spessartite
4.2 Features
Available in Lots of Colors and Patterns, Generally rough to touch, Surfaces are often shiny
Always found as volcanic pipes over deep continental crust, Host rock for Diamond, Is one of the oldest rock, Surfaces are often shiny
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Scoria forms when magma containing huge amount of dissolved gas flows from a volcano during an eruption.
Lamprophyre formation takes place deep beneath the Earth’s surface at around 150 to 450 kilometres, and are erupted rapidly and violently.
5.2 Composition
5.2.1 Mineral Content
Apatite, Biotite, Calcite, Feldspar, Hematite, Hornblade, Ilmenite, Magnetite, Olivine, Pyroxene, Quartz, Silica
Amphibole, Carbonate, Garnet, Micas, Olivine, Phlogopite, Pyroxene
5.2.2 Compound Content
Ca, NaCl
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
Cataclastic Metamorphism, Impact Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion
Chemical Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5-6
5-6
6.1.2 Grain Size
Fine Grained
Fine to Coarse Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Highly Porous
Very Less Porous
6.1.6 Luster
Subvitreous to Dull
Subvitreous to Dull
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Conchoidal
6.1.9 Toughness
2.1
Not Available
6.1.10 Specific Gravity
Not Available
2.86-2.87
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
Not Available
2.95-2.96 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Afghanistan, Indonesia, Japan, Russia
Russia
7.1.2 Africa
Ethiopia, Kenya, Tanzania
Angola, Botswana, Cameroon, Ethiopia, South Africa
7.1.3 Europe
Greece, Hungary, Iceland, Italy, Turkey
England, Hungary, Iceland, United Kingdom
7.1.4 Others
Not Yet Found
Antarctica, Greenland
7.2 Deposits in Western Continents
7.2.1 North America
Bahamas, Barbados, Canada, Costa Rica, Cuba, Jamaica, Mexico, USA
Canada, Mexico, USA
7.2.2 South America
Argentina, Chile, Ecuador, Peru
Argentina, Colombia, Ecuador
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Western Australia
New South Wales, New Zealand, Queensland, South Australia, Western Australia

Scoria vs Lamprophyre Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Scoria and Lamprophyre Reserves. Scoria is a dark-colored extrusive igneous rock with abundant round bubble-like cavities. Lamprophyre is uncommon igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks and small intrusions. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Scoria vs Lamprophyre information and Scoria vs Lamprophyre characteristics in the upcoming sections.

Scoria vs Lamprophyre Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Scoria vs Lamprophyre characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Scoria and Properties of Lamprophyre. Learn more about Scoria vs Lamprophyre in the next section. The interior uses of Scoria include Decorative aggregates and Interior decoration whereas the interior uses of Lamprophyre include Decorative aggregates and Interior decoration. Due to some exceptional properties of Scoria and Lamprophyre, they have various applications in construction industry. The uses of Scoria in construction industry include Cement manufacture, Construction aggregate, For road aggregate, In landscaping and drainage works and that of Lamprophyre include As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories.

More about Scoria and Lamprophyre

Here you can know more about Scoria and Lamprophyre. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Scoria and Lamprophyre consists of mineral content and compound content. The mineral content of Scoria includes Apatite, Biotite, Calcite, Feldspar, Hematite, Hornblade, Ilmenite, Magnetite, Olivine, Pyroxene, Quartz, Silica and mineral content of Lamprophyre includes Amphibole, Carbonate, Garnet, Micas, Olivine, Phlogopite, Pyroxene. You can also check out the list of all Igneous Rocks. When we have to compare Scoria vs Lamprophyre, the texture, color and appearance plays an important role in determining the type of rock. Scoria is available in black, brown, dark grey to black, red colors whereas, Lamprophyre is available in black, bluish - grey, brown, dark greenish - grey, green, grey colors. Appearance of Scoria is Glassy and Vesicular and that of Lamprophyre is Dull, Banded and Foilated. Properties of rock is another aspect for Scoria vs Lamprophyre. Hardness of Scoria and Lamprophyre is 5-6. The types of Scoria are Not Available whereas types of Lamprophyre are Minette, Alnoite, Camptonite, Monchiquite, Fourchite, Vogesite, Appinite and Spessartite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Scoria and Lamprophyre is white. The specific heat capacity of Scoria is Not Available and that of Lamprophyre is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Scoria is heat resistant, impact resistant, pressure resistant, wear resistant whereas Lamprophyre is heat resistant, impact resistant.