Home
×

Quartzite
Quartzite

Breccia
Breccia



ADD
Compare
X
Quartzite
X
Breccia

Quartzite vs Breccia

Add ⊕
1 Definition
1.1 Definition
Quartzite is a non-foliated metamorphic rock that forms by the metamorphism of pure quartz Sandstone
Breccia is a rock consisting of angular fragments of stones which are cemented by finer calcareous material
1.2 History
1.2.1 Origin
Unknown
England
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From quartz + -ite
From Italian, literally gravel, Germanic origin and related to break
1.4 Class
Metamorphic Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Foliated, Granular
Brecciated, Clastic
2.2 Color
Black, Blue, Brown, Green, Light Grey, Purple, White, Yellow
Beige, Black, Blue, Brown, Buff, Green, Grey, Orange, Pink, Purple, Red, Rust, White, Yellow
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Lustrous
Layered, Banded, Veined and Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Flooring, Homes
Countertops, Decorative Aggregates, Entryways, Floor Tiles, Flooring, Homes, Hotels, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
Arrowheads, As Dimension Stone, Cement Manufacture, Construction Aggregate, Cutting Tool, for Road Aggregate, Making natural cement, Production of Glass and Ceramics, Rail Track Ballast, Roadstone
As Dimension Stone, Construction Aggregate, Landscaping, Roadstone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture
Artifacts, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As armour rock for sea walls, Cemetery Markers, Commemorative Tablets, In aquifers, Laboratory bench tops, Petroleum reservoirs, Soil Conditioner, Source of Magnesia (MgO), Tombstones, Used in aquariums
Creating Artwork, Gemstone, Jewelry
4 Types
4.1 Types
Not Available
Collapse Breccia, Fault Breccia, Flow Breccia, Pyroclastic Breccia, Igneous Breccia and Impact Breccia
4.2 Features
Generally rough to touch, Is one of the oldest rock
Available in Lots of Colors and Patterns, Clasts are smooth to touch
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Quartzite forms from sandstone and the mineral quartz being put under extreme heat and pressure.
Breccia is a clastic sedimentary rock which is composed of broken fragments of minerals or rock which are cemented together by a fine-grained matrix and it forms where broken, angular fragments of rock or mineral debris accumulate.
5.2 Composition
5.2.1 Mineral Content
Chlorite, Epidote, Hematite, Kyanite, Magnetite, Muscovite or Illite, Quartz
Calcite, Clay, Feldspar, Phosphates, Quartz, Silica
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, MgO, Sodium Oxide, Silicon Dioxide
Aluminium Oxide, Ca, NaCl, CaO, Iron(III) Oxide, Potassium Oxide, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Hydrothermal Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Water Erosion, Wind Erosion
Chemical Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6-7
7
6.1.2 Grain Size
Medium Grained
Medium to Coarse Grained
6.1.3 Fracture
Uneven, Splintery or Conchoidal
Uneven
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Vitreous
Dull to Pearly
6.1.7 Compressive Strength
Flint
115.00 N/mm2
Rank: 18 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Indiscernible
Non-Existent
6.1.9 Toughness
1.9
Not Available
6.1.10 Specific Gravity
2.6-2.8
2.86-2.87
6.1.11 Transparency
Transparent to Translucent
Opaque
6.1.12 Density
2.32-2.42 g/cm3
0 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.75 kJ/Kg K
Rank: 18 (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Israel, Russia, South Korea, Thailand, Turkey
China, India, Kazakhstan, Mongolia, Russia, South Korea, Uzbekistan
7.1.2 Africa
Ethiopia, Morocco, South Africa, Zimbabwe
Namibia, Nigeria, South Africa
7.1.3 Europe
England, Italy, Norway, Scotland, Sweden, United Kingdom
Austria, Denmark, Germany, Great Britain, Netherlands, Norway, Poland, Sweden, Switzerland, United Kingdom
7.1.4 Others
Greenland
Greenland
7.2 Deposits in Western Continents
7.2.1 North America
Bahamas, Canada, USA
Barbados, Canada, Mexico, Panama, USA
7.2.2 South America
Brazil, Colombia, Venezuela
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Queensland, Western Australia
New South Wales, New Zealand

Quartzite vs Breccia Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Quartzite and Breccia Reserves. Quartzite is a non-foliated metamorphic rock that forms by the metamorphism of pure quartz Sandstone. Breccia is a rock consisting of angular fragments of stones which are cemented by finer calcareous material. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Quartzite vs Breccia information and Quartzite vs Breccia characteristics in the upcoming sections.

Quartzite vs Breccia Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Quartzite vs Breccia characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Quartzite and Properties of Breccia. Learn more about Quartzite vs Breccia in the next section. The interior uses of Quartzite include Countertops, Decorative aggregates, Flooring and Homes whereas the interior uses of Breccia include Countertops, Decorative aggregates, Entryways, Floor tiles, Flooring, Homes, Hotels and Interior decoration. Due to some exceptional properties of Quartzite and Breccia, they have various applications in construction industry. The uses of Quartzite in construction industry include Arrowheads, As dimension stone, Cement manufacture, Construction aggregate, Cutting tool, For road aggregate, Making natural cement, Production of glass and ceramics, Rail track ballast, Roadstone and that of Breccia include As dimension stone, Construction aggregate, Landscaping, Roadstone.

More about Quartzite and Breccia

Here you can know more about Quartzite and Breccia. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Quartzite and Breccia consists of mineral content and compound content. The mineral content of Quartzite includes Chlorite, Epidote, Hematite, Kyanite, Magnetite, Muscovite or Illite, Quartz and mineral content of Breccia includes Calcite, Clay, Feldspar, Phosphates, Quartz, Silica. You can also check out the list of all Metamorphic Rocks. When we have to compare Quartzite vs Breccia, the texture, color and appearance plays an important role in determining the type of rock. Quartzite is available in black, blue, brown, green, light grey, purple, white, yellow colors whereas, Breccia is available in beige, black, blue, brown, buff, green, grey, orange, pink, purple, red, rust, white, yellow colors. Appearance of Quartzite is Lustrous and that of Breccia is Layered, Banded, Veined and Shiny. Properties of rock is another aspect for Quartzite vs Breccia. The hardness of Quartzite is 6-7 and that of Breccia is 7. The types of Quartzite are Not Available whereas types of Breccia are Collapse Breccia, Fault Breccia, Flow Breccia, Pyroclastic Breccia, Igneous Breccia and Impact Breccia. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Quartzite and Breccia is white. The specific heat capacity of Quartzite is 0.75 kJ/Kg K and that of Breccia is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Quartzite is heat resistant, impact resistant, pressure resistant, wear resistant whereas Breccia is heat resistant, impact resistant, pressure resistant, wear resistant.