Home
×

Pyroxenite
Pyroxenite

Obsidian
Obsidian



ADD
Compare
X
Pyroxenite
X
Obsidian

Pyroxenite vs Obsidian

1 Definition
1.1 Definition
Pyroxenite is a dark, greenish, granular intrusive igneous rock consisting mainly of pyroxenes and olivine
Obsidian is a naturally occurring volcanic glass formed as an extrusive igneous rock. It is produced when felsic lava extruded from a volcano cools rapidly with minimum crystal growth
1.2 History
1.2.1 Origin
Unknown
Ethiopia
1.2.2 Discoverer
Unknown
Obsius
1.3 Etymology
From pyro- fire + Greek xenos stranger as the mineral group was new to igneous rocks
From Latin obsidianus, misprint of Obsianus (lapis) (stone) of Obsius
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Plutonic
Volcanic
1.6 Other Categories
Coarse Grained Rock, Opaque Rock
Opaque Rock
2 Texture
2.1 Texture
Clastic, Granular, Phaneritic, Porphyritic
Glassy
2.2 Color
Black to Grey, Bluish - Grey, Dark Greenish - Grey, Green, Light Greenish Grey
Black, Blue, Brown, Green, Orange, Red, Tan, Yellow
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Layered, Banded, Veined and Shiny
Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Interior Decoration, Kitchens
Decorative Aggregates, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone
Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate
Arrowheads, Cutting Tool, Knives, Scrapers, Spear Points
3.2.2 Medical Industry
Not Yet Used
Surgery
3.3 Antiquity Uses
Artifacts
Artifacts, Jewellery
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Commemorative Tablets, Laboratory bench tops, Jewelry, Sea Defence, Tombstones
Creating Artwork, Mirror, Used in aquariums
4 Types
4.1 Types
Clinopyroxenites, Orthopyroxenites and Websterites
Fireworks Obsidian, Mahogany, Sheen Obsidian, Snowflake obsidian and Velvet Peacock Obsidian
4.2 Features
Generally rough to touch, Host rock for Diamond, Is one of the oldest rock
Blocks negativity, Helps to protect against depression
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Not Yet Used
4.3.2 Famous Monuments
Not Applicable
Not Applicable
4.3.3 Sculpture
Not Yet Used
Not Yet Used
4.3.4 Famous Sculptures
Not Applicable
Not Applicable
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Not Yet Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Pyroxenites are ultramafic igneous rocks which are made up of minerals of the pyroxene group, such as augite and diopside, hypersthene, bronzite or enstatite.
When the lava is released from volcano, it undergoes a very rapid cooling which freezes the mechanisms of crystallization. The result is a volcanic glass with a uniform smooth texture.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Augite, Bronzite, Chromite, Diopside, Enstatite, Garnet, Hornblende, Hypersthene, Magnetite, Pyroxene
Not Available
5.2.2 Compound Content
Aluminium Oxide, CaO, Chromium(III) Oxide, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Sulfur Trioxide
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Water Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
7
5-5.5
6.1.2 Grain Size
Coarse Grained
Not Applicable
6.1.3 Fracture
Uneven
Conchoidal
6.1.4 Streak
White, Greenish White or Grey
White
6.1.5 Porosity
Less Porous
Very Less Porous
6.1.6 Luster
Dull to Vitreous to Submetallic
Vitreous
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
0.15 N/mm2
Rank: 33 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Irregular
Non-Existent
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
3.2-3.5
2.6-2.7
6.1.11 Transparency
Opaque
Translucent
6.1.12 Density
3.1-3.6 g/cm3
2.6 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
Afghanistan, Indonesia, Japan, Russia
7.1.2 Africa
South Africa
Kenya
7.1.3 Europe
Germany, Greece, Italy, Scotland, Turkey
Greece, Hungary, Iceland, Italy, Turkey
7.1.4 Others
Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, Mexico, USA
7.2.2 South America
Brazil, Colombia, Venezuela
Argentina, Chile, Ecuador, Peru
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Queensland
New Zealand

Pyroxenite vs Obsidian Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Pyroxenite and Obsidian Reserves. Pyroxenite is a dark, greenish, granular intrusive igneous rock consisting mainly of pyroxenes and olivine. Obsidian is a naturally occurring volcanic glass formed as an extrusive igneous rock. It is produced when felsic lava extruded from a volcano cools rapidly with minimum crystal growth. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Pyroxenite vs Obsidian information and Pyroxenite vs Obsidian characteristics in the upcoming sections.

Pyroxenite vs Obsidian Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Pyroxenite vs Obsidian characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Pyroxenite and Properties of Obsidian. Learn more about Pyroxenite vs Obsidian in the next section. The interior uses of Pyroxenite include Countertops, Decorative aggregates, Interior decoration and Kitchens whereas the interior uses of Obsidian include Decorative aggregates and Interior decoration. Due to some exceptional properties of Pyroxenite and Obsidian, they have various applications in construction industry. The uses of Pyroxenite in construction industry include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate and that of Obsidian include Arrowheads, Cutting tool, Knives, Scrapers, Spear points.

More about Pyroxenite and Obsidian

Here you can know more about Pyroxenite and Obsidian. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Pyroxenite and Obsidian consists of mineral content and compound content. The mineral content of Pyroxenite includes Amphibole, Augite, Bronzite, Chromite, Diopside, Enstatite, Garnet, Hornblende, Hypersthene, Magnetite, Pyroxene and mineral content of Obsidian is not available. You can also check out the list of all Igneous Rocks. When we have to compare Pyroxenite vs Obsidian, the texture, color and appearance plays an important role in determining the type of rock. Pyroxenite is available in black to grey, bluish - grey, dark greenish - grey, green, light greenish grey colors whereas, Obsidian is available in black, blue, brown, green, orange, red, tan, yellow colors. Appearance of Pyroxenite is Layered, Banded, Veined and Shiny and that of Obsidian is Shiny. Properties of rock is another aspect for Pyroxenite vs Obsidian. The hardness of Pyroxenite is 7 and that of Obsidian is 5-5.5. The types of Pyroxenite are Clinopyroxenites, Orthopyroxenites and Websterites whereas types of Obsidian are Fireworks Obsidian, Mahogany, Sheen Obsidian, Snowflake obsidian and Velvet Peacock Obsidian. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Pyroxenite and Obsidian is white, greenish white or grey. The specific heat capacity of Pyroxenite is Not Available and that of Obsidian is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Pyroxenite is impact resistant, pressure resistant, wear resistant whereas Obsidian is heat resistant, impact resistant.