Home
×

Pyroxenite
Pyroxenite

Basalt
Basalt



ADD
Compare
X
Pyroxenite
X
Basalt

Pyroxenite and Basalt

Add ⊕
1 Definition
1.1 Definition
Pyroxenite is a dark, greenish, granular intrusive igneous rock consisting mainly of pyroxenes and olivine
Basalt is a common extrusive igneous rock formed by the rapid cooling of basaltic lava exposed at or very near the surface of Earth
1.2 History
1.2.1 Origin
Unknown
Egypt
1.2.2 Discoverer
Unknown
Georgius Agricola
1.3 Etymology
From pyro- fire + Greek xenos stranger as the mineral group was new to igneous rocks
From Late Latin Basaltes (variant of basanites ), very hard stone, which was imported from Ancient Greek Basanites
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Plutonic
Volcanic
1.6 Other Categories
Coarse Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Clastic, Granular, Phaneritic, Porphyritic
Glassy, Massive, Porphyritic, Scoriaceous, Vesicular
2.2 Color
Black to Grey, Bluish - Grey, Dark Greenish - Grey, Green, Light Greenish Grey
Black, Brown, Light to Dark Grey
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Layered, Banded, Veined and Shiny
Dull and Soft
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Interior Decoration, Kitchens
Floor Tiles, Homes, Hotels, Kitchens
3.1.2 Exterior Uses
As Building Stone, As Facing Stone
As Building Stone, Paving Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing, Whetstones
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate
Arrowheads, As Dimension Stone, Cobblestones, Cutting Tool, Rail Track Ballast, Roadstone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts
Artifacts, Monuments
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Commemorative Tablets, Laboratory bench tops, Jewelry, Sea Defence, Tombstones
An Oil and Gas Reservoir, Commemorative Tablets, Creating Artwork, Used in aquariums
4 Types
4.1 Types
Clinopyroxenites, Orthopyroxenites and Websterites
Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB), Tholeiitic Basalt, Basaltic trachyandesite, Mugearite and Shoshonite
4.2 Features
Generally rough to touch, Host rock for Diamond, Is one of the oldest rock
Has High structural resistance against erosion and climate, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Easter Island in the Polynesian Triangle, Pacific Ocean, Gateway of India in Mumbai, India, Gol Gumbaz in Karnataka, India
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Pyroxenites are ultramafic igneous rocks which are made up of minerals of the pyroxene group, such as augite and diopside, hypersthene, bronzite or enstatite.
Basalt forms when lava reaches the Earth's surface near an active volcano. The temperature of lava is between 1100 to 1250° C when it gets to the surface.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Augite, Bronzite, Chromite, Diopside, Enstatite, Garnet, Hornblende, Hypersthene, Magnetite, Pyroxene
Olivine, Plagioclase, Pyroxene
5.2.2 Compound Content
Aluminium Oxide, CaO, Chromium(III) Oxide, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Sulfur Trioxide
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Impact Metamorphism, Regional Metamorphism
Contact Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Water Erosion
Not Available
6 Properties
6.1 Physical Properties
6.1.1 Hardness
7
6
6.1.2 Grain Size
Coarse Grained
Fine Grained
6.1.3 Fracture
Uneven
Conchoidal
6.1.4 Streak
White, Greenish White or Grey
White to Grey
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Dull to Vitreous to Submetallic
Not Available
6.1.7 Compressive Strength
What Is Flint
Not Available
Rank: N/A (Overall)
37.40 N/mm2
Rank: 28 (Overall)
What Is Obsidian
ADD ⊕
6.1.8 Cleavage
Irregular
Not Available
6.1.9 Toughness
Not Available
2.3
6.1.10 Specific Gravity
3.2-3.5
2.8-3
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
3.1-3.6 g/cm3
2.9-3.1 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
What Is Banded ..
Not Available
Rank: N/A (Overall)
0.84 kJ/Kg K
Rank: 15 (Overall)
What Is Granulite
ADD ⊕
6.2.2 Resistance
Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
India, Russia
7.1.2 Africa
South Africa
South Africa
7.1.3 Europe
Germany, Greece, Italy, Scotland, Turkey
Iceland
7.1.4 Others
Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, USA
7.2.2 South America
Brazil, Colombia, Venezuela
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Queensland
Not Yet Found

All about Pyroxenite and Basalt Properties

Know all about Pyroxenite and Basalt properties here. All properties of rocks are important as they define the type of rock and its application. Pyroxenite and Basalt belong to Igneous Rocks.Texture of Pyroxenite is Clastic, Granular, Phaneritic, Porphyritic whereas that of Basalt is Glassy, Massive, Porphyritic, Scoriaceous, Vesicular. Pyroxenite appears Layered, Banded, Veined and Shiny and Basalt appears Dull and Soft. The luster of Pyroxenite is dull to vitreous to submetallic while that of Basalt is not available. Pyroxenite is available in black to grey, bluish - grey, dark greenish - grey, green, light greenish grey colors whereas Basalt is available in black, brown, light to dark grey colors. The commercial uses of Pyroxenite are cemetery markers, commemorative tablets, laboratory bench tops, jewelry, sea defence, tombstones and that of Basalt are an oil and gas reservoir, commemorative tablets, creating artwork, used in aquariums.