Home
×

Phyllite
Phyllite

Amphibolite
Amphibolite



ADD
Compare
X
Phyllite
X
Amphibolite

Phyllite vs Amphibolite

1 Definition
1.1 Definition
Phyllite is a fine-grained metamorphic rock with a well-developed laminar structure, and is intermediate between slate and schist rocks
Amphibolite can be defined as a granular metamorphic rock which mainly consist of hornblende and plagioclase
1.2 History
1.2.1 Origin
Unknown
Unknown
1.2.2 Discoverer
Unknown
Alexandre Brongniart
1.3 Etymology
From Greek phullon leaf + -ite1
From Amphibole + -ite
1.4 Class
Metamorphic Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Phyllitic Sheen, Slaty
Banded, Foliated, Massive
2.2 Color
Black to Grey, Light Greenish Grey
Black, Brown, Green, Grey
2.3 Maintenance
More
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Crinkled or Wavy
Foliated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
Countertops, Decorative Aggregates, Entryways, Floor Tiles, Flooring, Homes, Hotels, Kitchens
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
As Building Stone, As Facing Stone, Paving Stone, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate, Raw material for the manufacture of mortar, Roadstone
As Dimension Stone, Building houses or walls, Cobblestones, Construction Aggregate, for Road Aggregate, Landscaping, Production of Glass and Ceramics, Roadstone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Sculpture
Artifacts, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Commemorative Tablets, Creating Artwork, Writing Slates
Cemetery Markers, Commemorative Tablets, Creating Artwork
4 Types
4.1 Types
Not Available
Hornblendite
4.2 Features
Easily splits into thin plates, Is one of the oldest rock, Surfaces are often shiny
Clasts are smooth to touch, Matrix variable, Surfaces are often shiny
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Phyllite is a metamorphic rock which is formed by regional metamorphism of argillaceous sediments since their cleavage arose due to deviatoric stress.
Amphibolite is a coarse-grained metamorphic rock which forms by metamorphism of mafic igneous rocks like basalt and gabbro or from the metamorphism of clay-rich sedimentary rocks like marl or graywacke.
5.2 Composition
5.2.1 Mineral Content
Albite, Alusite, Amphibole, Apatite, Biotite, Chlorite, Epidote, Feldspar, Garnet, Graphite, Hornblade, Kyanite, Micas, Muscovite or Illite, Porphyroblasts, Quartz, Sillimanite, Staurolite, Talc, Zircon
Amphibole, Andalusite, Biotite, Calcite, Epidote, Garnet, Hornblade, Kyanite, Magnetite, Olivine, Plagioclase, Pyroxene, Staurolite, Wollastonite
5.2.2 Compound Content
CaO, Carbon Dioxide, MgO
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Not Applicable
Not Applicable
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Glacier Erosion, Sea Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
1-2
6-7
6.1.2 Grain Size
Medium to Fine Coarse Grained
Medium to Coarse Grained
6.1.3 Fracture
Conchoidal
Irregular to Conchoidal
6.1.4 Streak
White
White to Grey
6.1.5 Porosity
Highly Porous
Less Porous
6.1.6 Luster
Phyllitic
Vitreous to Dull
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Crenulation and Pervasive
Irregular
6.1.9 Toughness
1.2
2.3
6.1.10 Specific Gravity
2.72-2.73
2.5
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.18-3.3 g/cm3
2.85-3.07 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Water Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Afghanistan, Bangladesh, Bhutan, China, India, Japan, Kazakhstan, Malaysia, Pakistan, Russia, Thailand, Turkey, Vietnam
Russia, Turkey
7.1.2 Africa
Egypt, Ethiopia, Morocco, Nigeria, South Africa
Burundi, Djibouti, Eritrea, Ethiopia, Kenya, Madagascar, Rwanda, Somalia, South Africa, Sudan, Tanzania, Uganda
7.1.3 Europe
Austria, England, France, Georgia, Germany, Italy, Liechtenstein, Monaco, Norway, Slovenia, Spain, Sweden, Switzerland
Germany, Greece, Iceland, Norway, Poland
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Costa Rica, Cuba, Mexico, Panama, USA
Canada, USA
7.2.2 South America
Brazil, Colombia, Guyana
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, Queensland
South Australia, Western Australia

Phyllite vs Amphibolite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Phyllite and Amphibolite Reserves. Phyllite is a fine-grained metamorphic rock with a well-developed laminar structure, and is intermediate between slate and schist rocks. Amphibolite can be defined as a granular metamorphic rock which mainly consist of hornblende and plagioclase. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Phyllite vs Amphibolite information and Phyllite vs Amphibolite characteristics in the upcoming sections.

Phyllite vs Amphibolite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Phyllite vs Amphibolite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Phyllite and Properties of Amphibolite. Learn more about Phyllite vs Amphibolite in the next section. The interior uses of Phyllite include Decorative aggregates, Floor tiles, Homes and Interior decoration whereas the interior uses of Amphibolite include Countertops, Decorative aggregates, Entryways, Floor tiles, Flooring, Homes, Hotels and Kitchens. Due to some exceptional properties of Phyllite and Amphibolite, they have various applications in construction industry. The uses of Phyllite in construction industry include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate, Raw material for the manufacture of mortar, Roadstone and that of Amphibolite include As dimension stone, Building houses or walls, Cobblestones, Construction aggregate, For road aggregate, Landscaping, Production of glass and ceramics, Roadstone.

More about Phyllite and Amphibolite

Here you can know more about Phyllite and Amphibolite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Phyllite and Amphibolite consists of mineral content and compound content. The mineral content of Phyllite includes Albite, Alusite, Amphibole, Apatite, Biotite, Chlorite, Epidote, Feldspar, Garnet, Graphite, Hornblade, Kyanite, Micas, Muscovite or Illite, Porphyroblasts, Quartz, Sillimanite, Staurolite, Talc, Zircon and mineral content of Amphibolite includes Amphibole, Andalusite, Biotite, Calcite, Epidote, Garnet, Hornblade, Kyanite, Magnetite, Olivine, Plagioclase, Pyroxene, Staurolite, Wollastonite. You can also check out the list of all Metamorphic Rocks. When we have to compare Phyllite vs Amphibolite, the texture, color and appearance plays an important role in determining the type of rock. Phyllite is available in black to grey, light greenish grey colors whereas, Amphibolite is available in black, brown, green, grey colors. Appearance of Phyllite is Crinkled or Wavy and that of Amphibolite is Foliated. Properties of rock is another aspect for Phyllite vs Amphibolite. The hardness of Phyllite is 1-2 and that of Amphibolite is 6-7. The types of Phyllite are Not Available whereas types of Amphibolite are Hornblendite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Phyllite is white while that of Amphibolite is white to grey. The specific heat capacity of Phyllite is Not Available and that of Amphibolite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Phyllite is heat resistant, pressure resistant, water resistant whereas Amphibolite is heat resistant, pressure resistant, wear resistant.

Let Others Know
×