Home
×

Phonolite
Phonolite

Travertine
Travertine



ADD
Compare
X
Phonolite
X
Travertine

Phonolite vs Travertine

1 Definition
1.1 Definition
Phonolite is an uncommon extrusive igneous rock volcanic rock of intermediate chemical composition between felsic and mafic
Travertine is a mineral consisting of layered calcium carbonate formed by deposition from spring waters
1.2 History
1.2.1 Origin
Unknown
Italy
1.2.2 Discoverer
Unknown
Marcus Vitruvius Pollio
1.3 Etymology
From the Greek meaning sounding stone because of the metallic sound it produces if an unfractured plate is hit
From Italian travertino a kind of building stone, from Tiburs, adjective from Tibur (Tivoli), in Italy
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Granular
Banded
2.2 Color
Brown, Buff, Cream, Green, Grey, Pink, White
Beige, Black, Blue, Brown, Grey, Red, White, Yellow
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Banded and Foilated
Fibrous
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Flooring, Homes
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings, Paving Stone
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate, Raw material for the manufacture of mortar
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Jewellery, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Creating Artwork
Cemetery Markers, Creating Artwork, Gemstone, Jewelry, Paper Industry, Pottery
4 Types
4.1 Types
Kenyte
Not Available
4.2 Features
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock
Stalactites and stalagmites are formed from this rock, Surfaces are often shiny, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Colosseum in Rome, Italy, Sacré Coeur in Paris, France, Trevi Fountain in Rome, Italy
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Phonolite are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.
Travertine is a type of sedimentary rock formed when a river carries or transports pieces of broken rock which then undergo sedimentation. They are then subjected to high temperature and pressure hence forming travertine rock.
5.2 Composition
5.2.1 Mineral Content
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite
Calcite, Clay, Feldspar, Micas, Quartz
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Ca, NaCl, CaO, Oxygen
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Contact Metamorphism
Not Applicable
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5.5-6
3-4
6.1.2 Grain Size
Fine Grained
Fine Grained
6.1.3 Fracture
Conchoidal to Uneven
Splintery
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Greasy to Dull
Dull to Pearly
6.1.7 Compressive Strength
Flint
150.00 N/mm2
Rank: 14 (Overall)
80.00 N/mm2
Rank: 23 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Poor
Non-Existent
6.1.9 Toughness
Not Available
1
6.1.10 Specific Gravity
2.6
1.68
6.1.11 Transparency
Translucent to Opaque
Opaque
6.1.12 Density
2.6 g/cm3
2.71 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
1.09 kJ/Kg K
Rank: 8 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Wear Resistant
Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam
China, Russia
7.1.2 Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
Not Yet Found
7.1.3 Europe
Andorra, Finland, France, Germany, Great Britain, Italy, Norway, Portugal, Spain, Sweden
Austria, Italy, Portugal, United Kingdom
7.1.4 Others
Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, USA
7.2.2 South America
Brazil, Chile, Colombia, Uruguay, Venezuela
Argentina, Bolivia, Ecuador
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Queensland, South Australia, Tasmania, Western Australia
Not Yet Found

Phonolite vs Travertine Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Phonolite and Travertine Reserves. Phonolite is an uncommon extrusive igneous rock volcanic rock of intermediate chemical composition between felsic and mafic. Travertine is a mineral consisting of layered calcium carbonate formed by deposition from spring waters. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Phonolite vs Travertine information and Phonolite vs Travertine characteristics in the upcoming sections.

Phonolite vs Travertine Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Phonolite vs Travertine characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Phonolite and Properties of Travertine. Learn more about Phonolite vs Travertine in the next section. The interior uses of Phonolite include Countertops, Decorative aggregates, Flooring and Homes whereas the interior uses of Travertine include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration. Due to some exceptional properties of Phonolite and Travertine, they have various applications in construction industry. The uses of Phonolite in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics and that of Travertine include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate, Raw material for the manufacture of mortar.

More about Phonolite and Travertine

Here you can know more about Phonolite and Travertine. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Phonolite and Travertine consists of mineral content and compound content. The mineral content of Phonolite includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite and mineral content of Travertine includes Calcite, Clay, Feldspar, Micas, Quartz. You can also check out the list of all Igneous Rocks. When we have to compare Phonolite vs Travertine, the texture, color and appearance plays an important role in determining the type of rock. Phonolite is available in brown, buff, cream, green, grey, pink, white colors whereas, Travertine is available in beige, black, blue, brown, grey, red, white, yellow colors. Appearance of Phonolite is Banded and Foilated and that of Travertine is Fibrous. Properties of rock is another aspect for Phonolite vs Travertine. The hardness of Phonolite is 5.5-6 and that of Travertine is 3-4. The types of Phonolite are Kenyte whereas types of Travertine are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Phonolite and Travertine is white. The specific heat capacity of Phonolite is Not Available and that of Travertine is 1.09 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Phonolite is heat resistant, impact resistant, wear resistant whereas Travertine is impact resistant, pressure resistant, wear resistant.