Home
×

Phonolite
Phonolite

Banded iron formation
Banded iron formation



ADD
Compare
X
Phonolite
X
Banded iron formation

Phonolite vs Banded iron formation

1 Definition
1.1 Definition
Phonolite is an uncommon extrusive igneous rock volcanic rock of intermediate chemical composition between felsic and mafic
Banded iron formation are distinctive units of sedimentary rock that are almost always of Precambrian age
1.2 History
1.2.1 Origin
Unknown
Western Australia, Minnesota
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From the Greek meaning sounding stone because of the metallic sound it produces if an unfractured plate is hit
From its formation process
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Granular
Banded, Trellis
2.2 Color
Brown, Buff, Cream, Green, Grey, Pink, White
Red, Reddish Brown
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Banded and Foilated
Layered, Banded, Veined and Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Flooring, Homes
Decorative Aggregates, Homes
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings, Paving Stone
Paving Stone, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing, Whetstones
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics
As Dimension Stone, Used for flooring, stair treads, borders and window sills.
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Creating Artwork
As a touchstone, Cemetery Markers, Creating Artwork
4 Types
4.1 Types
Kenyte
Algoma-type , Lake Superior-type, Superior-type and Taconite
4.2 Features
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock
Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Phonolite are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.
The banded iron layers are formed in sea water when oxygen is released by photosynthetic cyano-bacteria. The oxygen then combines with dissolved iron in ocean to form insoluble iron oxides, which precipitated out, forming a thin layer of banded iron formation on ocean floor.
5.2 Composition
5.2.1 Mineral Content
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite
Hematite, Magnetite, Quartz
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Fe, Iron(III) Oxide, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Contact Metamorphism
Not Applicable
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Chemical Weathering, Mechanical Weathering
Chemical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Water Erosion, Wind Erosion
Coastal Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5.5-6
5.5-6
6.1.2 Grain Size
Fine Grained
Large and Coarse Grained
6.1.3 Fracture
Conchoidal to Uneven
Uneven, Splintery or Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Greasy to Dull
Earthy
6.1.7 Compressive Strength
Flint
150.00 N/mm2
Rank: 14 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Poor
Imperfect
6.1.9 Toughness
Not Available
1.5
6.1.10 Specific Gravity
2.6
5.0-5.3
6.1.11 Transparency
Translucent to Opaque
Translucent to Opaque
6.1.12 Density
2.6 g/cm3
Not Available
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
3.20 kJ/Kg K
Rank: 1 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam
China, India, Iran, Iraq, Oman, Russia, Saudi Arabia, Taiwan, Thailand, Vietnam
7.1.2 Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
Kenya, Morocco, South Africa, Tanzania
7.1.3 Europe
Andorra, Finland, France, Germany, Great Britain, Italy, Norway, Portugal, Spain, Sweden
Austria, France, Greece, Italy, Malta, Poland, Portugal, Serbia, Spain, Sweden, United Kingdom
7.1.4 Others
Greenland
Greenland, Mid-Atlantic Ridge
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, Mexico, USA
7.2.2 South America
Brazil, Chile, Colombia, Uruguay, Venezuela
Bolivia, Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Queensland, South Australia, Tasmania, Western Australia
New South Wales, Queensland, South Australia, Western Australia

Phonolite vs Banded iron formation Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Phonolite and Banded iron formation Reserves. Phonolite is an uncommon extrusive igneous rock volcanic rock of intermediate chemical composition between felsic and mafic. Banded iron formation are distinctive units of sedimentary rock that are almost always of Precambrian age. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Phonolite vs Banded iron formation information and Phonolite vs Banded iron formation characteristics in the upcoming sections.

Phonolite vs Banded iron formation Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Phonolite vs Banded iron formation characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Phonolite and Properties of Banded iron formation. Learn more about Phonolite vs Banded iron formation in the next section. The interior uses of Phonolite include Countertops, Decorative aggregates, Flooring and Homes whereas the interior uses of Banded iron formation include Decorative aggregates and Homes. Due to some exceptional properties of Phonolite and Banded iron formation, they have various applications in construction industry. The uses of Phonolite in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics and that of Banded iron formation include As dimension stone, Used for flooring, stair treads, borders and window sills..

More about Phonolite and Banded iron formation

Here you can know more about Phonolite and Banded iron formation. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Phonolite and Banded iron formation consists of mineral content and compound content. The mineral content of Phonolite includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite and mineral content of Banded iron formation includes Hematite, Magnetite, Quartz. You can also check out the list of all Igneous Rocks. When we have to compare Phonolite vs Banded iron formation, the texture, color and appearance plays an important role in determining the type of rock. Phonolite is available in brown, buff, cream, green, grey, pink, white colors whereas, Banded iron formation is available in red, reddish brown colors. Appearance of Phonolite is Banded and Foilated and that of Banded iron formation is Layered, Banded, Veined and Shiny. Properties of rock is another aspect for Phonolite vs Banded iron formation. Hardness of Phonolite and Banded iron formation is 5.5-6. The types of Phonolite are Kenyte whereas types of Banded iron formation are Algoma-type , Lake Superior-type, Superior-type and Taconite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Phonolite and Banded iron formation is white. The specific heat capacity of Phonolite is Not Available and that of Banded iron formation is 3.20 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Phonolite is heat resistant, impact resistant, wear resistant whereas Banded iron formation is heat resistant, impact resistant, pressure resistant, wear resistant.