Home
×

Lherzolite
Lherzolite

Breccia
Breccia



ADD
Compare
X
Lherzolite
X
Breccia

Lherzolite vs Breccia

1 Definition
1.1 Definition
Lherzolite is a type of ultramafic igneous rock which contains essential olivine and clinopyroxene and orthopyroxene in equal proportions
Breccia is a rock consisting of angular fragments of stones which are cemented by finer calcareous material
1.2 History
1.2.1 Origin
France
England
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From the Lherz Massif, an alpine peridotite complex, at Étang de Lers, near Massat in the French Pyrenees; Lherz is the archaic spelling of this location
From Italian, literally gravel, Germanic origin and related to break
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Plutonic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Grenue
Brecciated, Clastic
2.2 Color
Black, Dark Greenish - Grey, Green, Pink, Purple
Beige, Black, Blue, Brown, Buff, Green, Grey, Orange, Pink, Purple, Red, Rust, White, Yellow
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Glassy, Vesicular and Foilated
Layered, Banded, Veined and Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Entryways, Homes, Interior Decoration
Countertops, Decorative Aggregates, Entryways, Floor Tiles, Flooring, Homes, Hotels, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Office Buildings
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
Landscaping, Manufacture of Magnesium and Dolomite Refractories, Used for flooring, stair treads, borders and window sills.
As Dimension Stone, Construction Aggregate, Landscaping, Roadstone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Sculpture
Artifacts, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
As armour rock for sea walls, Source of Magnesia (MgO), Used in aquariums
Creating Artwork, Gemstone, Jewelry
4 Types
4.1 Types
Garnet Lherzolite
Collapse Breccia, Fault Breccia, Flow Breccia, Pyroclastic Breccia, Igneous Breccia and Impact Breccia
4.2 Features
Host Rock for Lead
Available in Lots of Colors and Patterns, Clasts are smooth to touch
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Not Yet Used
4.3.2 Famous Monuments
Not Applicable
Not Applicable
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Lherzolite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Breccia is a clastic sedimentary rock which is composed of broken fragments of minerals or rock which are cemented together by a fine-grained matrix and it forms where broken, angular fragments of rock or mineral debris accumulate.
5.2 Composition
5.2.1 Mineral Content
Harzburgite, Olivine, Pyroxene, Pyrrhotite
Calcite, Clay, Feldspar, Phosphates, Quartz, Silica
5.2.2 Compound Content
CaO, Cr, Chromium(III) Oxide, MgO
Aluminium Oxide, Ca, NaCl, CaO, Iron(III) Oxide, Potassium Oxide, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Contact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Water Erosion, Wind Erosion
Chemical Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6.5
7
6.1.2 Grain Size
Fine Grained
Medium to Coarse Grained
6.1.3 Fracture
Conchoidal
Uneven
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Subvitreous to Dull
Dull to Pearly
6.1.7 Compressive Strength
Flint
290.00 N/mm2
Rank: 3 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Non-Existent
6.1.9 Toughness
2.7
Not Available
6.1.10 Specific Gravity
2.86
2.86-2.87
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.8-2.9 g/cm3
0 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.95 kJ/Kg K
Rank: 9 (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Russia, South Korea
China, India, Kazakhstan, Mongolia, Russia, South Korea, Uzbekistan
7.1.2 Africa
Western Africa
Namibia, Nigeria, South Africa
7.1.3 Europe
United Kingdom
Austria, Denmark, Germany, Great Britain, Netherlands, Norway, Poland, Sweden, Switzerland, United Kingdom
7.1.4 Others
Not Yet Found
Greenland
7.2 Deposits in Western Continents
7.2.1 North America
USA
Barbados, Canada, Mexico, Panama, USA
7.2.2 South America
Not Yet Found
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, Western Australia
New South Wales, New Zealand

Lherzolite vs Breccia Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Lherzolite and Breccia Reserves. Lherzolite is a type of ultramafic igneous rock which contains essential olivine and clinopyroxene and orthopyroxene in equal proportions. Breccia is a rock consisting of angular fragments of stones which are cemented by finer calcareous material. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Lherzolite vs Breccia information and Lherzolite vs Breccia characteristics in the upcoming sections.

Lherzolite vs Breccia Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Lherzolite vs Breccia characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Lherzolite and Properties of Breccia. Learn more about Lherzolite vs Breccia in the next section. The interior uses of Lherzolite include Decorative aggregates, Entryways, Homes and Interior decoration whereas the interior uses of Breccia include Countertops, Decorative aggregates, Entryways, Floor tiles, Flooring, Homes, Hotels and Interior decoration. Due to some exceptional properties of Lherzolite and Breccia, they have various applications in construction industry. The uses of Lherzolite in construction industry include Landscaping, Manufacture of magnesium and dolomite refractories, Used for flooring, stair treads, borders and window sills. and that of Breccia include As dimension stone, Construction aggregate, Landscaping, Roadstone.

More about Lherzolite and Breccia

Here you can know more about Lherzolite and Breccia. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Lherzolite and Breccia consists of mineral content and compound content. The mineral content of Lherzolite includes Harzburgite, Olivine, Pyroxene, Pyrrhotite and mineral content of Breccia includes Calcite, Clay, Feldspar, Phosphates, Quartz, Silica. You can also check out the list of all Igneous Rocks. When we have to compare Lherzolite vs Breccia, the texture, color and appearance plays an important role in determining the type of rock. Lherzolite is available in black, dark greenish - grey, green, pink, purple colors whereas, Breccia is available in beige, black, blue, brown, buff, green, grey, orange, pink, purple, red, rust, white, yellow colors. Appearance of Lherzolite is Glassy, Vesicular and Foilated and that of Breccia is Layered, Banded, Veined and Shiny. Properties of rock is another aspect for Lherzolite vs Breccia. The hardness of Lherzolite is 6.5 and that of Breccia is 7. The types of Lherzolite are Garnet Lherzolite whereas types of Breccia are Collapse Breccia, Fault Breccia, Flow Breccia, Pyroclastic Breccia, Igneous Breccia and Impact Breccia. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Lherzolite and Breccia is white. The specific heat capacity of Lherzolite is 0.95 kJ/Kg K and that of Breccia is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Lherzolite is heat resistant, impact resistant, pressure resistant, wear resistant whereas Breccia is heat resistant, impact resistant, pressure resistant, wear resistant.