Home
×

Latite
Latite

Syenite
Syenite



ADD
Compare
X
Latite
X
Syenite

Latite vs Syenite

Add ⊕
1 Definition
1.1 Definition
Latite is an igneous, volcanic rock, with aphanitic-aphyric to aphyric-porphyritic texture
Syenite is a coarse-grained igneous rock which is composed mainly of alkali feldspar and various ferromagnesian minerals
1.2 History
1.2.1 Origin
Italy
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From the Latin word latium
From French syénite, from Latin Syenites (lapis ) (stone) of Syene
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Plutonic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Aphanitic to Porphyritic
Earthy
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White
Brown, Buff, Cream, Green, Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Rough
Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Entryways, Interior Decoration
Flooring, Homes, Hotels, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Metallurgical Flux, Soil Conditioner, Source of Magnesia (MgO)
Cemetery Markers, Creating Artwork
4 Types
4.1 Types
Rhomb porphyries
Shonkinite
4.2 Features
Host Rock for Lead
Available in Lots of Colors and Patterns, Is one of the oldest rock, Matrix variable
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Latite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Syenites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.
5.2 Composition
5.2.1 Mineral Content
Alkali feldspar, Biotite, Plagioclase, Pyroxene
Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz
5.2.2 Compound Content
CaO, Cl, MgO
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5-5.5
5.5-6
6.1.2 Grain Size
Fine Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal
Not Available
6.1.4 Streak
White
White
6.1.5 Porosity
Very Less Porous
Less Porous
6.1.6 Luster
Subvitreous to Dull
Subvitreous to Dull
6.1.7 Compressive Strength
Flint
310.00 N/mm2
Rank: 2 (Overall)
150.00 N/mm2
Rank: 14 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Perfect
6.1.9 Toughness
2.7
Not Available
6.1.10 Specific Gravity
2.86
2.6-2.7
6.1.11 Transparency
Translucent
Opaque
6.1.12 Density
2.8-2.9 g/cm3
2.6-2.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant
Heat Resistant, Impact Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
7.1.2 Africa
Not Yet Found
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
7.1.3 Europe
Bulgaria
Bulgaria, England, Germany, Norway, Romania, Switzerland
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
USA
7.2.2 South America
Not Yet Found
Brazil, Chile
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New Zealand, Queensland, South Australia, Western Australia

Latite vs Syenite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Latite and Syenite Reserves. Latite is an igneous, volcanic rock, with aphanitic-aphyric to aphyric-porphyritic texture. Syenite is a coarse-grained igneous rock which is composed mainly of alkali feldspar and various ferromagnesian minerals. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Latite vs Syenite information and Latite vs Syenite characteristics in the upcoming sections.

Latite vs Syenite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Latite vs Syenite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Latite and Properties of Syenite. Learn more about Latite vs Syenite in the next section. The interior uses of Latite include Decorative aggregates, Entryways and Interior decoration whereas the interior uses of Syenite include Flooring, Homes, Hotels and Interior decoration. Due to some exceptional properties of Latite and Syenite, they have various applications in construction industry. The uses of Latite in construction industry include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories and that of Syenite include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories.

More about Latite and Syenite

Here you can know more about Latite and Syenite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Latite and Syenite consists of mineral content and compound content. The mineral content of Latite includes Alkali feldspar, Biotite, Plagioclase, Pyroxene and mineral content of Syenite includes Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz. You can also check out the list of all Igneous Rocks. When we have to compare Latite vs Syenite, the texture, color and appearance plays an important role in determining the type of rock. Latite is available in black, brown, colourless, green, grey, pink, white colors whereas, Syenite is available in brown, buff, cream, green, grey, pink, white colors. Appearance of Latite is Rough and that of Syenite is Banded and Foilated. Properties of rock is another aspect for Latite vs Syenite. The hardness of Latite is 5-5.5 and that of Syenite is 5.5-6. The types of Latite are Rhomb porphyries whereas types of Syenite are Shonkinite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Latite and Syenite is white. The specific heat capacity of Latite is 0.92 kJ/Kg K and that of Syenite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Latite is heat resistant, pressure resistant whereas Syenite is heat resistant, impact resistant, wear resistant.