Home
×

Larvikite
Larvikite

Rapakivi Granite
Rapakivi Granite



ADD
Compare
X
Larvikite
X
Rapakivi Granite

Larvikite vs Rapakivi Granite

1 Definition
1.1 Definition
Larvikite is an igneous rock and a variety of monzonite, notable for the presence of thumbnail-sized crystals of feldspar
Rapakivi Granite is a hornblende-biotite Granite containing large rounded crystals of orthoclase which are mantled with oligoclase
1.2 History
1.2.1 Origin
Larvik, Norway
Finland, Europe
1.2.2 Discoverer
Unknown
Jakob Sederholm
1.3 Etymology
From the town of Larvik in Norway, where this type of igneous rock is found
From Finnish Rapakivi which stands for crumbly rock
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Plutonic
Plutonic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Phaneritic
Granular, Phaneritic
2.2 Color
Black, Brown, Light to Dark Grey, White
Black, Grey, Orange, Pink, White
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Shiny
Veined or Pebbled
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Homes, Interior Decoration
Bathrooms, Countertops, Decorative Aggregates, Entryways, Floor Tiles, Flooring, Homes, Hotels, Interior Decoration, Kitchens, Stair Treads
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings, Paving Stone
As Building Stone, As Facing Stone, Office Buildings, Paving Stone, Resorts
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate
As Dimension Stone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Commemorative Tablets, Creating Artwork
Cemetery Markers, Commemorative Tablets, Creating Artwork, Curling, Laboratory bench tops, Tombstones
4 Types
4.1 Types
Quartz Monzonite, Syenite and Diorite
Igneous Protolith Granite, Sedimentary Protolith Granite, Mantle Granite, Anorogenic Granite and Hybrid Granite
4.2 Features
Available in lots of colors, Is one of the oldest rock
Available in Lots of Colors and Patterns, It is One of the Oldest, Strongest and Hardest Rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Larvikite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Granite is an igneous rock which is very hard, crystalline and is visibly homogeneous in texture and forms by melting of continental rocks
5.2 Composition
5.2.1 Mineral Content
Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon
Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion
Chemical Erosion, Coastal Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6-7
6-7
6.1.2 Grain Size
Medium to Fine Coarse Grained
Large and Coarse Grained
6.1.3 Fracture
Not Available
Not Available
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Subvitreous to Dull
Dull to Grainy with Sporadic parts Pearly and Vitreous
6.1.7 Compressive Strength
Flint
310.00 N/mm2
Rank: 2 (Overall)
175.00 N/mm2
Rank: 13 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Not Available
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
2.8-3
2.6-2.7
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.9-2.91 g/cm3
2.6-2.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
0.79 kJ/Kg K
Rank: 16 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant
Heat Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
7.1.2 Africa
Not Yet Found
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
7.1.3 Europe
Bulgaria, England, Germany, Norway, Romania, Switzerland
Austria, Belgium, Finland, France, Germany, Italy, Norway, Sardinia, Spain, Switzerland, The Czech Republic, Venezuela
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, USA
7.2.2 South America
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru
Not Yet Found
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, Queensland, South Australia, Western Australia
Not Yet Found

Larvikite vs Rapakivi Granite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Larvikite and Rapakivi Granite Reserves. Larvikite is an igneous rock and a variety of monzonite, notable for the presence of thumbnail-sized crystals of feldspar. Rapakivi Granite is a hornblende-biotite Granite containing large rounded crystals of orthoclase which are mantled with oligoclase. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Larvikite vs Rapakivi Granite information and Larvikite vs Rapakivi Granite characteristics in the upcoming sections.

Larvikite vs Rapakivi Granite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Larvikite vs Rapakivi Granite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Larvikite and Properties of Rapakivi Granite. Learn more about Larvikite vs Rapakivi Granite in the next section. The interior uses of Larvikite include Decorative aggregates, Homes and Interior decoration whereas the interior uses of Rapakivi Granite include Bathrooms, Countertops, Decorative aggregates, Entryways, Floor tiles, Flooring, Homes, Hotels, Interior decoration, Kitchens and Stair treads. Due to some exceptional properties of Larvikite and Rapakivi Granite, they have various applications in construction industry. The uses of Larvikite in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate and that of Rapakivi Granite include As dimension stone.

More about Larvikite and Rapakivi Granite

Here you can know more about Larvikite and Rapakivi Granite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Larvikite and Rapakivi Granite consists of mineral content and compound content. The mineral content of Larvikite includes Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon and mineral content of Rapakivi Granite includes Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz. You can also check out the list of all Igneous Rocks. When we have to compare Larvikite vs Rapakivi Granite, the texture, color and appearance plays an important role in determining the type of rock. Larvikite is available in black, brown, light to dark grey, white colors whereas, Rapakivi Granite is available in black, grey, orange, pink, white colors. Appearance of Larvikite is Shiny and that of Rapakivi Granite is Veined or Pebbled. Properties of rock is another aspect for Larvikite vs Rapakivi Granite. Hardness of Larvikite and Rapakivi Granite is 6-7. The types of Larvikite are Quartz Monzonite, Syenite and Diorite whereas types of Rapakivi Granite are Igneous Protolith Granite, Sedimentary Protolith Granite, Mantle Granite, Anorogenic Granite and Hybrid Granite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Larvikite and Rapakivi Granite is white. The specific heat capacity of Larvikite is 0.92 kJ/Kg K and that of Rapakivi Granite is 0.79 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Larvikite is heat resistant, impact resistant, pressure resistant whereas Rapakivi Granite is heat resistant, wear resistant.

Let Others Know
×