Home
×

Larvikite
Larvikite

Peridotite
Peridotite



ADD
Compare
X
Larvikite
X
Peridotite

Larvikite vs Peridotite

1 Definition
1.1 Definition
Larvikite is an igneous rock and a variety of monzonite, notable for the presence of thumbnail-sized crystals of feldspar
Peridotite is a dense, coarse-grained plutonic is the main constituent of the earth's mantle
1.2 History
1.2.1 Origin
Larvik, Norway
Pike County, U.S
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From the town of Larvik in Norway, where this type of igneous rock is found
From French, from peridot +‎ -ite
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Plutonic
Plutonic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Phaneritic
Phaneritic
2.2 Color
Black, Brown, Light to Dark Grey, White
Dark Greenish - Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Shiny
Rough and Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Homes, Interior Decoration
Decorative Aggregates, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings, Paving Stone
As Building Stone, As Facing Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate
As Dimension Stone, Cobblestones
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Commemorative Tablets, Creating Artwork
Creating Artwork, Gemstone, Jewelry, Source of Chromite, Platinum, Nickel and Garnet, Source of Diamonds
4 Types
4.1 Types
Quartz Monzonite, Syenite and Diorite
Dunite, Wehrlite, Harzburgite, Lherzolite and Pyrolite
4.2 Features
Available in lots of colors, Is one of the oldest rock
Constitutes upper part of the Earth's mantle, Generally rough to touch, Host rock for Diamond, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Larvikite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Peridotites can be formed in two ways: as mantle rocks formed during the accretion and differentiation of the Earth or as cumulate rocks formed by precipitation of olivine and pyroxenes from basaltic magmas.
5.2 Composition
5.2.1 Mineral Content
Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon
Amphibole, Chromite, Garnet, Magnesium, Olivine, Phlogopite, Plagioclase, Pyroxene
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Ca, Fe, Mg, Potassium, Silicon Dioxide, Sodium, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion
Chemical Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6-7
5.5-6
6.1.2 Grain Size
Medium to Fine Coarse Grained
Coarse Grained
6.1.3 Fracture
Not Available
Irregular
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Subvitreous to Dull
Shiny
6.1.7 Compressive Strength
Flint
310.00 N/mm2
Rank: 2 (Overall)
107.55 N/mm2
Rank: 19 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Imperfect
6.1.9 Toughness
Not Available
2.1
6.1.10 Specific Gravity
2.8-3
3-3.01
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
2.9-2.91 g/cm3
3.1-3.4 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
1.26 kJ/Kg K
Rank: 5 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
China, India, Indonesia, Kazakhstan, Russia, South Korea, Thailand, Turkey
7.1.2 Africa
Not Yet Found
Morocco, South Africa
7.1.3 Europe
Bulgaria, England, Germany, Norway, Romania, Switzerland
Finland, France, Georgia, Germany, Great Britain, Italy, Kazakhstan, Netherlands, Norway, Spain, Switzerland, Venezuela
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, USA
7.2.2 South America
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, Queensland, South Australia, Western Australia
New Zealand, Western Australia

Larvikite vs Peridotite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Larvikite and Peridotite Reserves. Larvikite is an igneous rock and a variety of monzonite, notable for the presence of thumbnail-sized crystals of feldspar. Peridotite is a dense, coarse-grained plutonic is the main constituent of the earth's mantle. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Larvikite vs Peridotite information and Larvikite vs Peridotite characteristics in the upcoming sections.

Larvikite vs Peridotite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Larvikite vs Peridotite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Larvikite and Properties of Peridotite. Learn more about Larvikite vs Peridotite in the next section. The interior uses of Larvikite include Decorative aggregates, Homes and Interior decoration whereas the interior uses of Peridotite include Decorative aggregates and Interior decoration. Due to some exceptional properties of Larvikite and Peridotite, they have various applications in construction industry. The uses of Larvikite in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate and that of Peridotite include As dimension stone, Cobblestones.

More about Larvikite and Peridotite

Here you can know more about Larvikite and Peridotite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Larvikite and Peridotite consists of mineral content and compound content. The mineral content of Larvikite includes Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon and mineral content of Peridotite includes Amphibole, Chromite, Garnet, Magnesium, Olivine, Phlogopite, Plagioclase, Pyroxene. You can also check out the list of all Igneous Rocks. When we have to compare Larvikite vs Peridotite, the texture, color and appearance plays an important role in determining the type of rock. Larvikite is available in black, brown, light to dark grey, white colors whereas, Peridotite is available in dark greenish - grey colors. Appearance of Larvikite is Shiny and that of Peridotite is Rough and Shiny. Properties of rock is another aspect for Larvikite vs Peridotite. The hardness of Larvikite is 6-7 and that of Peridotite is 5.5-6. The types of Larvikite are Quartz Monzonite, Syenite and Diorite whereas types of Peridotite are Dunite, Wehrlite, Harzburgite, Lherzolite and Pyrolite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Larvikite and Peridotite is white. The specific heat capacity of Larvikite is 0.92 kJ/Kg K and that of Peridotite is 1.26 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Larvikite is heat resistant, impact resistant, pressure resistant whereas Peridotite is heat resistant, pressure resistant, wear resistant.