Home
×

Larvikite
Larvikite

Evaporite
Evaporite



ADD
Compare
X
Larvikite
X
Evaporite

Larvikite vs Evaporite

1 Definition
1.1 Definition
Larvikite is an igneous rock and a variety of monzonite, notable for the presence of thumbnail-sized crystals of feldspar
A water-soluble mineral sediment resulting from concentration and crystallization by evaporation from an aqueous solution
1.2 History
1.2.1 Origin
Larvik, Norway
USA
1.2.2 Discoverer
Unknown
Usiglio
1.3 Etymology
From the town of Larvik in Norway, where this type of igneous rock is found
From a sediment left after the evaporation
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Plutonic
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Phaneritic
Earthy
2.2 Color
Black, Brown, Light to Dark Grey, White
Colourless, Green, Grey, Silver, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Shiny
Glassy, Vesicular and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Homes, Interior Decoration
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings, Paving Stone
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Not Yet Used
Taken as a Supplement for Calcium or Magnesium
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Commemorative Tablets, Creating Artwork
Used in the manufacture of Ceramic Powder, Used in the preparation of Sulfuric Acid and Silicon Diborite
4 Types
4.1 Types
Quartz Monzonite, Syenite and Diorite
Not Available
4.2 Features
Available in lots of colors, Is one of the oldest rock
Generally rough to touch, Splintery, Veined
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Larvikite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Evaporite is water-soluble mineral sediment which forms from concentration and crystallization by evaporation from an aqueous solution.
5.2 Composition
5.2.1 Mineral Content
Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon
Calcite, Cancrinite, Gypsum, Kyanite, Magnetite
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
CaMg(CO3)2, CaO, Calcium Sulfate, KCl, MgO, NaCl
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Not Applicable
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion
Not Applicable
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6-7
2-3
6.1.2 Grain Size
Medium to Fine Coarse Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Not Available
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Subvitreous to Dull
Subvitreous to Dull
6.1.7 Compressive Strength
Flint
310.00 N/mm2
Rank: 2 (Overall)
225.00 N/mm2
Rank: 7 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Perfect
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
2.8-3
2.86-2.99
6.1.11 Transparency
Opaque
Translucent
6.1.12 Density
2.9-2.91 g/cm3
2.8-2.9 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant
Heat Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
Not Available
7.1.2 Africa
Not Yet Found
Not Available
7.1.3 Europe
Bulgaria, England, Germany, Norway, Romania, Switzerland
United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
USA
7.2.2 South America
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru
Colombia, Paraguay
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, Queensland, South Australia, Western Australia
Central Australia, Western Australia

Larvikite vs Evaporite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Larvikite and Evaporite Reserves. Larvikite is an igneous rock and a variety of monzonite, notable for the presence of thumbnail-sized crystals of feldspar. A water-soluble mineral sediment resulting from concentration and crystallization by evaporation from an aqueous solution. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Larvikite vs Evaporite information and Larvikite vs Evaporite characteristics in the upcoming sections.

Larvikite vs Evaporite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Larvikite vs Evaporite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Larvikite and Properties of Evaporite. Learn more about Larvikite vs Evaporite in the next section. The interior uses of Larvikite include Decorative aggregates, Homes and Interior decoration whereas the interior uses of Evaporite include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration. Due to some exceptional properties of Larvikite and Evaporite, they have various applications in construction industry. The uses of Larvikite in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate and that of Evaporite include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories.

More about Larvikite and Evaporite

Here you can know more about Larvikite and Evaporite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Larvikite and Evaporite consists of mineral content and compound content. The mineral content of Larvikite includes Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon and mineral content of Evaporite includes Calcite, Cancrinite, Gypsum, Kyanite, Magnetite. You can also check out the list of all Igneous Rocks. When we have to compare Larvikite vs Evaporite, the texture, color and appearance plays an important role in determining the type of rock. Larvikite is available in black, brown, light to dark grey, white colors whereas, Evaporite is available in colourless, green, grey, silver, white colors. Appearance of Larvikite is Shiny and that of Evaporite is Glassy, Vesicular and Foilated. Properties of rock is another aspect for Larvikite vs Evaporite. The hardness of Larvikite is 6-7 and that of Evaporite is 2-3. The types of Larvikite are Quartz Monzonite, Syenite and Diorite whereas types of Evaporite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Larvikite and Evaporite is white. The specific heat capacity of Larvikite is 0.92 kJ/Kg K and that of Evaporite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Larvikite is heat resistant, impact resistant, pressure resistant whereas Evaporite is heat resistant, pressure resistant.

Let Others Know
×