Home
×

Lamprophyre
Lamprophyre

Rapakivi Granite
Rapakivi Granite



ADD
Compare
X
Lamprophyre
X
Rapakivi Granite

Lamprophyre vs Rapakivi Granite

1 Definition
1.1 Definition
Lamprophyre is uncommon igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks and small intrusions
Rapakivi Granite is a hornblende-biotite Granite containing large rounded crystals of orthoclase which are mantled with oligoclase
1.2 History
1.2.1 Origin
Unknown
Finland, Europe
1.2.2 Discoverer
Unknown
Jakob Sederholm
1.3 Etymology
From Greek lampros bright and shining + porphureos purple
From Finnish Rapakivi which stands for crumbly rock
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Plutonic
Plutonic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Porphyritic
Granular, Phaneritic
2.2 Color
Black, Bluish - Grey, Brown, Dark Greenish - Grey, Green, Grey
Black, Grey, Orange, Pink, White
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Dull, Banded and Foilated
Veined or Pebbled
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Bathrooms, Countertops, Decorative Aggregates, Entryways, Floor Tiles, Flooring, Homes, Hotels, Interior Decoration, Kitchens, Stair Treads
3.1.2 Exterior Uses
As Building Stone, Office Buildings
As Building Stone, As Facing Stone, Office Buildings, Paving Stone, Resorts
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
As Dimension Stone
3.2.2 Medical Industry
Taken as a Supplement for Calcium or Magnesium
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
Cemetery Markers, Commemorative Tablets, Creating Artwork, Curling, Laboratory bench tops, Tombstones
4 Types
4.1 Types
Minette, Alnoite, Camptonite, Monchiquite, Fourchite, Vogesite, Appinite and Spessartite
Igneous Protolith Granite, Sedimentary Protolith Granite, Mantle Granite, Anorogenic Granite and Hybrid Granite
4.2 Features
Always found as volcanic pipes over deep continental crust, Host rock for Diamond, Is one of the oldest rock, Surfaces are often shiny
Available in Lots of Colors and Patterns, It is One of the Oldest, Strongest and Hardest Rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Lamprophyre formation takes place deep beneath the Earth’s surface at around 150 to 450 kilometres, and are erupted rapidly and violently.
Granite is an igneous rock which is very hard, crystalline and is visibly homogeneous in texture and forms by melting of continental rocks
5.2 Composition
5.2.1 Mineral Content
Amphibole, Carbonate, Garnet, Micas, Olivine, Phlogopite, Pyroxene
Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz
5.2.2 Compound Content
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Impact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5-6
6-7
6.1.2 Grain Size
Fine to Coarse Grained
Large and Coarse Grained
6.1.3 Fracture
Conchoidal
Not Available
6.1.4 Streak
White
White
6.1.5 Porosity
Very Less Porous
Less Porous
6.1.6 Luster
Subvitreous to Dull
Dull to Grainy with Sporadic parts Pearly and Vitreous
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
175.00 N/mm2
Rank: 13 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Conchoidal
Not Available
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
2.86-2.87
2.6-2.7
6.1.11 Transparency
Translucent to Opaque
Opaque
6.1.12 Density
2.95-2.96 g/cm3
2.6-2.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.79 kJ/Kg K
Rank: 16 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant
Heat Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Russia
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
7.1.2 Africa
Angola, Botswana, Cameroon, Ethiopia, South Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
7.1.3 Europe
England, Hungary, Iceland, United Kingdom
Austria, Belgium, Finland, France, Germany, Italy, Norway, Sardinia, Spain, Switzerland, The Czech Republic, Venezuela
7.1.4 Others
Antarctica, Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Mexico, USA
Canada, USA
7.2.2 South America
Argentina, Colombia, Ecuador
Not Yet Found
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, Queensland, South Australia, Western Australia
Not Yet Found

Lamprophyre vs Rapakivi Granite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Lamprophyre and Rapakivi Granite Reserves. Lamprophyre is uncommon igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks and small intrusions. Rapakivi Granite is a hornblende-biotite Granite containing large rounded crystals of orthoclase which are mantled with oligoclase. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Lamprophyre vs Rapakivi Granite information and Lamprophyre vs Rapakivi Granite characteristics in the upcoming sections.

Lamprophyre vs Rapakivi Granite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Lamprophyre vs Rapakivi Granite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Lamprophyre and Properties of Rapakivi Granite. Learn more about Lamprophyre vs Rapakivi Granite in the next section. The interior uses of Lamprophyre include Decorative aggregates and Interior decoration whereas the interior uses of Rapakivi Granite include Bathrooms, Countertops, Decorative aggregates, Entryways, Floor tiles, Flooring, Homes, Hotels, Interior decoration, Kitchens and Stair treads. Due to some exceptional properties of Lamprophyre and Rapakivi Granite, they have various applications in construction industry. The uses of Lamprophyre in construction industry include As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories and that of Rapakivi Granite include As dimension stone.

More about Lamprophyre and Rapakivi Granite

Here you can know more about Lamprophyre and Rapakivi Granite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Lamprophyre and Rapakivi Granite consists of mineral content and compound content. The mineral content of Lamprophyre includes Amphibole, Carbonate, Garnet, Micas, Olivine, Phlogopite, Pyroxene and mineral content of Rapakivi Granite includes Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz. You can also check out the list of all Igneous Rocks. When we have to compare Lamprophyre vs Rapakivi Granite, the texture, color and appearance plays an important role in determining the type of rock. Lamprophyre is available in black, bluish - grey, brown, dark greenish - grey, green, grey colors whereas, Rapakivi Granite is available in black, grey, orange, pink, white colors. Appearance of Lamprophyre is Dull, Banded and Foilated and that of Rapakivi Granite is Veined or Pebbled. Properties of rock is another aspect for Lamprophyre vs Rapakivi Granite. The hardness of Lamprophyre is 5-6 and that of Rapakivi Granite is 6-7. The types of Lamprophyre are Minette, Alnoite, Camptonite, Monchiquite, Fourchite, Vogesite, Appinite and Spessartite whereas types of Rapakivi Granite are Igneous Protolith Granite, Sedimentary Protolith Granite, Mantle Granite, Anorogenic Granite and Hybrid Granite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Lamprophyre and Rapakivi Granite is white. The specific heat capacity of Lamprophyre is Not Available and that of Rapakivi Granite is 0.79 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Lamprophyre is heat resistant, impact resistant whereas Rapakivi Granite is heat resistant, wear resistant.