Home
×

Diorite
Diorite

Skarn
Skarn



ADD
Compare
X
Diorite
X
Skarn

Diorite vs Skarn

Add ⊕
1 Definition
1.1 Definition
Diorite is a grey to dark-grey intermediate intrusive igneous rock composed principally of plagioclase feldspar,biotite, hornblende, and pyroxene
Skarns are formed during regional or contact metamorphism and from a variety of metasomatic processes involving fluids of magmatic, metamorphic, and/or marine origin
1.2 History
1.2.1 Origin
Unknown
USA, Australia
1.2.2 Discoverer
Unknown
Tornebohm
1.3 Etymology
From early 19th century coined in French, formed irregularly from Greek diorizein distinguish
From an old Swedish mining term originally used to describe a type of silicate gangue or waste rock.
1.4 Class
Igneous Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Plutonic
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Phaneritic
Earthy, Mud-rich, Rough
2.2 Color
Black, Brown, Light to Dark Grey, White
Black, Brown, Colourless, Green, Grey, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Metamorphic Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
42% Metamorphic Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
19% Metamorphic Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
15% Metamorphic Rocks Rocks have it !
2.5 Appearance
Shiny
Dull
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Decorative Aggregates, Entryways, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Cobblestones, Construction Aggregate, for Road Aggregate
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Gold and Silver production, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Not Yet Used
Not Applicable
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Curling
Creating Artwork, Gemstone, Jewelry, Metallurgical Flux, Source of Magnesia (MgO)
4 Types
4.1 Types
Not Available
Endoskarns
4.2 Features
Typically speckled black and white.
Host Rock for Lead, Zinc and Copper Deposits
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Diorite is a coarse-grained intrusive igneous rock which contains large interlocking and randomly oriented crystals and forms when molten lava does not reach the Earth’s surface and cools down in the Earth’s crust.
Due to change in environmental conditions, rocks are heated and pressurized deep inside the Earth's surface. Skarn is formed from the extreme heat caused by magma or by the intense collisions and friction of tectonic plates.
5.2 Composition
5.2.1 Mineral Content
Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon
Calcite, Enstatite, Epidote, Garnet, Magnetite, Pyroxene, Titanite
5.2.2 Compound Content
Silicon Dioxide
Au, CaO, Carbon Dioxide, Cu, Fe, MgO
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
50% Metamorphic Rocks Rocks have it !
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Contact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Not Applicable
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
77% Metamorphic Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Water Erosion
Not Applicable
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6-7
6.5
6.1.2 Grain Size
Medium to Coarse Grained
Fine Grained
6.1.3 Fracture
Not Available
Irregular
6.1.4 Streak
Bluish Black
Light to dark brown
6.1.5 Porosity
Very Less Porous
Less Porous
6.1.6 Luster
Shiny
Waxy and Dull
6.1.7 Compressive Strength
Flint
225.00 N/mm2
Rank: 7 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Slaty
6.1.9 Toughness
2.1
2.4
6.1.10 Specific Gravity
2.8-3
2.86
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.8-3 g/cm3
2.8-2.9 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
China, India, Russia, Saudi Arabia, South Korea, Sri Lanka
7.1.2 Africa
Egypt
South Africa, Western Africa
7.1.3 Europe
Finland, Germany, Italy, Romania, Sweden, Turkey, United Kingdom
United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada
7.2.2 South America
Argentina, Bolivia, Chile, Colombia, Ecuador, Peru
Brazil, Colombia, Paraguay
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Western Australia
Central Australia, Western Australia

Diorite vs Skarn Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Diorite and Skarn Reserves. Diorite is a grey to dark-grey intermediate intrusive igneous rock composed principally of plagioclase feldspar,biotite, hornblende, and pyroxene. Skarns are formed during regional or contact metamorphism and from a variety of metasomatic processes involving fluids of magmatic, metamorphic, and/or marine origin. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Diorite vs Skarn information and Diorite vs Skarn characteristics in the upcoming sections.

Diorite vs Skarn Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Diorite vs Skarn characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Diorite and Properties of Skarn. Learn more about Diorite vs Skarn in the next section. The interior uses of Diorite include Decorative aggregates and Interior decoration whereas the interior uses of Skarn include Decorative aggregates, Entryways and Interior decoration. Due to some exceptional properties of Diorite and Skarn, they have various applications in construction industry. The uses of Diorite in construction industry include As dimension stone, Cement manufacture, Cobblestones, Construction aggregate, For road aggregate and that of Skarn include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Gold and silver production, Manufacture of magnesium and dolomite refractories.

More about Diorite and Skarn

Here you can know more about Diorite and Skarn. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Diorite and Skarn consists of mineral content and compound content. The mineral content of Diorite includes Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon and mineral content of Skarn includes Calcite, Enstatite, Epidote, Garnet, Magnetite, Pyroxene, Titanite. You can also check out the list of all Igneous Rocks. When we have to compare Diorite vs Skarn, the texture, color and appearance plays an important role in determining the type of rock. Diorite is available in black, brown, light to dark grey, white colors whereas, Skarn is available in black, brown, colourless, green, grey, white colors. Appearance of Diorite is Shiny and that of Skarn is Dull. Properties of rock is another aspect for Diorite vs Skarn. The hardness of Diorite is 6-7 and that of Skarn is 6.5. The types of Diorite are Not Available whereas types of Skarn are Endoskarns. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Diorite is bluish black while that of Skarn is light to dark brown. The specific heat capacity of Diorite is Not Available and that of Skarn is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Diorite is heat resistant, pressure resistant, wear resistant whereas Skarn is heat resistant.