Home
×

Diabase
Diabase

Icelandite
Icelandite



ADD
Compare
X
Diabase
X
Icelandite

Diabase vs Icelandite

1 Definition
1.1 Definition
Diabase is a fine-grained igneous rock which is composed mostly of pyroxene and feldspar
Icelandite belongs to volcanic igneous rocks which is rich in iron and belongs to andesite rock
1.2 History
1.2.1 Origin
Germany
Iceland
1.2.2 Discoverer
Christian Leopold von Buch
Ian S. E. Carmichael
1.3 Etymology
From Greek di + base
From its origin place near Cenozoic volcano near the parsonage Þingmúli in East Iceland
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Volcanic
Volcanic
1.6 Other Categories
Fine Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Aphanitic, Granular
Aphanitic to Porphyritic
2.2 Color
Dark Grey to Black
Bluish - Grey, Grey, Pink, Yellow
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Vesicular
Dull and Soft
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Homes, Interior Decoration, Kitchens
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration, Kitchens
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
Office Buildings, Roof Tiles
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate
Cobblestones, Construction Aggregate, for Road Aggregate
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts, Jewellery, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, Cemetery Markers, Commemorative Tablets, Laboratory bench tops, Jewelry, Sea Defence, Tombstones
Cemetery Markers, Creating Artwork
4 Types
4.1 Types
Not Available
Not Available
4.2 Features
Smooth to touch
Generally rough to touch, High silica content, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Stonehenge in English county of Wiltshire
Not Applicable
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Diabase forms when molten igneous rock is squeezed up into a vertical crack in other rocks, the crack is usually forced apart and the molten rock cools in the space to form a tabular igneous intrusion cutting across the surrounding rocks and is known as a dike.
Icelandite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
5.2 Composition
5.2.1 Mineral Content
Augite, Chlorite, Olivine, Plagioclase, Pyroxene, Pyrrhotite, Serpentine
Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Ilmenite, Magnetite, Plagioclase, Pyroxene, Quartz, Zircon
5.2.2 Compound Content
Aluminium Oxide, CaO, Chromium(III) Oxide, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide, Sulfur Trioxide
Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering
Biological Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Water Erosion
Chemical Erosion, Coastal Erosion, Sea Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
7
7
6.1.2 Grain Size
Fine to Medium Grained
Very fine-grained
6.1.3 Fracture
Conchoidal
Uneven
6.1.4 Streak
Black
White
6.1.5 Porosity
Highly Porous
Less Porous
6.1.6 Luster
Not Available
Vitreous
6.1.7 Compressive Strength
Flint
225.00 N/mm2
Rank: 7 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Not Available
6.1.9 Toughness
1.6
1.1
6.1.10 Specific Gravity
2.86-2.87
2.5-2.8
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.7-3.3 g/cm3
2.11-2.36 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
2.39 kJ/Kg K
Rank: 2 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Pressure Resistant, Scratch Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India
India, Indonesia, Japan, Nepal, South Korea
7.1.2 Africa
South Africa, Tanzania
Egypt, Ethiopia, Morocco, Namibia, South Africa, Tanzania
7.1.3 Europe
Germany, Greece, Italy, Scotland, Turkey
Austria, Finland, Germany, Italy, Romania, Turkey, United Kingdom
7.1.4 Others
Antarctica, Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Mexico, USA
7.2.2 South America
Argentina, Brazil, Colombia, Venezuela
Argentina, Bolivia, Chile, Colombia, Ecuador, Peru, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, New Zealand, Queensland, Western Australia
New South Wales, New Zealand, Western Australia

Diabase vs Icelandite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Diabase and Icelandite Reserves. Diabase is a fine-grained igneous rock which is composed mostly of pyroxene and feldspar. Icelandite belongs to volcanic igneous rocks which is rich in iron and belongs to andesite rock. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Diabase vs Icelandite information and Diabase vs Icelandite characteristics in the upcoming sections.

Diabase vs Icelandite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Diabase vs Icelandite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Diabase and Properties of Icelandite. Learn more about Diabase vs Icelandite in the next section. The interior uses of Diabase include Countertops, Decorative aggregates, Homes, Interior decoration and Kitchens whereas the interior uses of Icelandite include Decorative aggregates, Floor tiles, Homes, Interior decoration and Kitchens. Due to some exceptional properties of Diabase and Icelandite, they have various applications in construction industry. The uses of Diabase in construction industry include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate and that of Icelandite include Cobblestones, Construction aggregate, For road aggregate.

More about Diabase and Icelandite

Here you can know more about Diabase and Icelandite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Diabase and Icelandite consists of mineral content and compound content. The mineral content of Diabase includes Augite, Chlorite, Olivine, Plagioclase, Pyroxene, Pyrrhotite, Serpentine and mineral content of Icelandite includes Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Ilmenite, Magnetite, Plagioclase, Pyroxene, Quartz, Zircon. You can also check out the list of all Igneous Rocks. When we have to compare Diabase vs Icelandite, the texture, color and appearance plays an important role in determining the type of rock. Diabase is available in dark grey to black colors whereas, Icelandite is available in bluish - grey, grey, pink, yellow colors. Appearance of Diabase is Vesicular and that of Icelandite is Dull and Soft. Properties of rock is another aspect for Diabase vs Icelandite. Hardness of Diabase and Icelandite is 7. The types of Diabase are Not Available whereas types of Icelandite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Diabase is black while that of Icelandite is white. The specific heat capacity of Diabase is Not Available and that of Icelandite is 2.39 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Diabase is heat resistant, impact resistant, pressure resistant, wear resistant whereas Icelandite is heat resistant, pressure resistant, scratch resistant, wear resistant.