Home
×

Argillite
Argillite

Jasperoid
Jasperoid



ADD
Compare
X
Argillite
X
Jasperoid

Argillite vs Jasperoid

1 Definition
1.1 Definition
Argillites are highly compact sedimentary or slightly metamorphosed rocks that consist largely or wholly of particles of clay or silt but lack the fissility of shale or the cleavage characteristic of slate
Jasperoid is a rare, peculiar type of metasomatic alteration of rocks
1.2 History
1.2.1 Origin
Unknown
USA
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From Latin Argilla (clay) and -ite in English which became agrilla+ -ite = Argillite
From silica, the main mineral content of Jasperoid
1.4 Class
Sedimentary Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Clastic, Polished
Earthy
2.2 Color
Dark Grey to Black, Pink, Red, White
Black, Brown, Colourless, Green, Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
59% Sedimentary Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
62% Sedimentary Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
43% Sedimentary Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
38% Sedimentary Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
22% Sedimentary Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Rough and Dull
Glassy or Pearly
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Homes, Interior Decoration
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, Garden Decoration, Office Buildings
As Building Stone, Garden Decoration, Office Buildings, Paving Stone
3.1.3 Other Architectural Uses
Curbing, Whetstones
Curbing
3.2 Industry
3.2.1 Construction Industry
Used for flooring, stair treads, borders and window sills.
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics, Serves as an Oil and Gas Reservoir rock
3.2.2 Medical Industry
Not Yet Used
Taken as a Supplement for Calcium or Magnesium
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Jewellery, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Fire resistant, Used to manufracture paperweights and bookends
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
4 Types
4.1 Types
Not Available
Not Available
4.2 Features
Is one of the oldest rock
Host Rock for Lead, Traps for subsurface fluids like Oil and Natural Gas., Zinc and Copper Deposits
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Present
Present
5 Formation
5.1 Formation
An argillite is a fine-grained sedimentary rock mainly composed of clay particles which forms from lithified muds which contain variable amounts of silt-sized particles.
Jasperoid is a rare and peculiar type of metasomatic alteration of rocks. It is formed by extreme alteration of wall rocks within a shear zone which may occur in sediments, andesites, trachytes and basalts.
5.2 Composition
5.2.1 Mineral Content
Biotite, Chlorite, Feldspar, Micas, Muscovite or Illite, Plagioclase, Pyrite, Quartz
Clay Minerals, Pyrite, Quartz, Sulfides
5.2.2 Compound Content
Iron(III) Oxide, Potassium Oxide, MgO, Silicon Dioxide
NaCl, CaO, Carbon Dioxide, Magnesium Carbonate, MgO
5.3 Transformation
5.3.1 Metamorphism
19% Sedimentary Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Not Applicable
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism
5.3.3 Weathering
78% Sedimentary Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering
Not Applicable
5.3.5 Erosion
86% Sedimentary Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion
Not Applicable
6 Properties
6.1 Physical Properties
6.1.1 Hardness
2-3
3.5-4
6.1.2 Grain Size
Fine Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal to Uneven
Conchoidal
6.1.4 Streak
White to Grey
White
6.1.5 Porosity
Highly Porous
Less Porous
6.1.6 Luster
Waxy and Dull
Vitreous and Pearly
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
140.00 N/mm2
Rank: 15 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Slaty
Perfect
6.1.9 Toughness
2.6
1
6.1.10 Specific Gravity
2.56-2.68
2.8-3
6.1.11 Transparency
Opaque
Transparent to Translucent
6.1.12 Density
2.54-2.66 g/cm3
2.8-2.9 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.87 kJ/Kg K
Rank: 14 (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Bangladesh, China, India, Russia
China, India
7.1.2 Africa
Ethiopia, Kenya, Morocco, South Africa, Tanzania
Morocco, Namibia
7.1.3 Europe
Austria, France, Germany, Greece, Italy, Romania, Scotland, Spain, Switzerland
Austria, Italy, Romania, Spain, Switzerland
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
Mexico, USA
7.2.2 South America
Bolivia, Chile, Colombia, Ecuador, Peru, Venezuela
Brazil, Colombia
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, Queensland, Victoria, Western Australia
New South Wales, Queensland, Yorke Peninsula

Argillite vs Jasperoid Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Argillite and Jasperoid Reserves. Argillites are highly compact sedimentary or slightly metamorphosed rocks that consist largely or wholly of particles of clay or silt but lack the fissility of shale or the cleavage characteristic of slate. Jasperoid is a rare, peculiar type of metasomatic alteration of rocks. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Argillite vs Jasperoid information and Argillite vs Jasperoid characteristics in the upcoming sections.

Argillite vs Jasperoid Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Argillite vs Jasperoid characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Argillite and Properties of Jasperoid. Learn more about Argillite vs Jasperoid in the next section. The interior uses of Argillite include Decorative aggregates, Homes and Interior decoration whereas the interior uses of Jasperoid include Decorative aggregates, Floor tiles, Homes and Interior decoration. Due to some exceptional properties of Argillite and Jasperoid, they have various applications in construction industry. The uses of Argillite in construction industry include Used for flooring, stair treads, borders and window sills. and that of Jasperoid include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics, Serves as an oil and gas reservoir rock.

More about Argillite and Jasperoid

Here you can know more about Argillite and Jasperoid. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Argillite and Jasperoid consists of mineral content and compound content. The mineral content of Argillite includes Biotite, Chlorite, Feldspar, Micas, Muscovite or Illite, Plagioclase, Pyrite, Quartz and mineral content of Jasperoid includes Clay Minerals, Pyrite, Quartz, Sulfides. You can also check out the list of all Sedimentary Rocks. When we have to compare Argillite vs Jasperoid, the texture, color and appearance plays an important role in determining the type of rock. Argillite is available in dark grey to black, pink, red, white colors whereas, Jasperoid is available in black, brown, colourless, green, grey, pink, white colors. Appearance of Argillite is Rough and Dull and that of Jasperoid is Glassy or Pearly. Properties of rock is another aspect for Argillite vs Jasperoid. The hardness of Argillite is 2-3 and that of Jasperoid is 3.5-4. The types of Argillite are Not Available whereas types of Jasperoid are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Argillite is white to grey while that of Jasperoid is white. The specific heat capacity of Argillite is 0.87 kJ/Kg K and that of Jasperoid is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Argillite is heat resistant, impact resistant whereas Jasperoid is heat resistant, pressure resistant, wear resistant.

Let Others Know
×