Home
×

Adakite
Adakite

Evaporite
Evaporite



ADD
Compare
X
Adakite
X
Evaporite

Adakite and Evaporite

Add ⊕
1 Definition
1.1 Definition
Adakite is an intermediate to felsic volcanic rock that has geochemical characteristics of magma which is said to be formed by partial melting of altered basalt that is subducted below volcanic arcs
A water-soluble mineral sediment resulting from concentration and crystallization by evaporation from an aqueous solution
1.2 History
1.2.1 Origin
Adak, Aleutian Islands
USA
1.2.2 Discoverer
Defant and Drummond
Usiglio
1.3 Etymology
From Adak, Aleutian Islands
From a sediment left after the evaporation
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Porphyritic
Earthy
2.2 Color
Black, Brown, Light to Dark Grey
Colourless, Green, Grey, Silver, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Dull and Soft
Glassy, Vesicular and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Hotels, Kitchens
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Office Buildings
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Whetstones
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cobblestones, Rail Track Ballast, Roadstone
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Not Yet Used
Taken as a Supplement for Calcium or Magnesium
3.3 Antiquity Uses
Monuments, Sculpture, Small Figurines
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Commemorative Tablets, Pottery, Used in aquariums
Used in the manufacture of Ceramic Powder, Used in the preparation of Sulfuric Acid and Silicon Diborite
4 Types
4.1 Types
Not Available
Not Available
4.2 Features
Has High structural resistance against erosion and climate, Host rock for Diamond, Very fine grained rock
Generally rough to touch, Splintery, Veined
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Adakite rocks are formed when the hydrous fluids are released from minerals that break down in metamorphosed basalt, and rise into the mantle they initiate partial melting.
Evaporite is water-soluble mineral sediment which forms from concentration and crystallization by evaporation from an aqueous solution.
5.2 Composition
5.2.1 Mineral Content
Olivine, Plagioclase, Pyroxene
Calcite, Cancrinite, Gypsum, Kyanite, Magnetite
5.2.2 Compound Content
Aluminium Oxide, MgO, Silicon Dioxide
CaMg(CO3)2, CaO, Calcium Sulfate, KCl, MgO, NaCl
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Chemical Weathering, Mechanical Weathering
Not Applicable
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Coastal Erosion, Sea Erosion, Water Erosion
Not Applicable
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3-4
2-3
6.1.2 Grain Size
Fine to Medium Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
Bluish Black
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Grainy, Pearly and Vitreous
Subvitreous to Dull
6.1.7 Compressive Strength
What Is Flint
Not Available
Rank: N/A (Overall)
225.00 N/mm2
Rank: 7 (Overall)
What Is Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Perfect
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
Not Available
2.86-2.99
6.1.11 Transparency
Opaque
Translucent
6.1.12 Density
Not Available
2.8-2.9 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
What Is Banded ..
Not Available
Rank: N/A (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
What Is Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
Not Available
7.1.2 Africa
Ethiopia, Somalia, South Africa
Not Available
7.1.3 Europe
Iceland
United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
USA
7.2.2 South America
Brazil
Colombia, Paraguay
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
Central Australia, Western Australia

All about Adakite and Evaporite Properties

Know all about Adakite and Evaporite properties here. All properties of rocks are important as they define the type of rock and its application. Adakite belongs to Igneous Rocks while Evaporite belongs to Sedimentary Rocks.Texture of Adakite is Porphyritic whereas that of Evaporite is Earthy. Adakite appears Dull and Soft and Evaporite appears Glassy, Vesicular and Foilated. The luster of Adakite is grainy, pearly and vitreous while that of Evaporite is subvitreous to dull. Adakite is available in black, brown, light to dark grey colors whereas Evaporite is available in colourless, green, grey, silver, white colors. The commercial uses of Adakite are commemorative tablets, pottery, used in aquariums and that of Evaporite are used in the manufacture of ceramic powder, used in the preparation of sulfuric acid and silicon diborite.