×

Travertine
Travertine

Kimberlite
Kimberlite



ADD
Compare
X
Travertine
X
Kimberlite

Travertine vs Kimberlite

1 Definition
1.1 Definition
Travertine is a mineral consisting of layered calcium carbonate formed by deposition from spring waters
Kimberlite is a rare, blue-tinged, coarse-grained intrusive igneous rock, which sometimes contains diamonds and is mostly found in South Africa and Siberia.
1.2 History
1.2.1 Origin
Italy
Kimberley, South Africa
1.2.2 Discoverer
Marcus Vitruvius Pollio
Unknown
1.3 Etymology
From Italian travertino a kind of building stone, from Tiburs, adjective from Tibur (Tivoli), in Italy
From Kimberley +‎ -ite, from the name of the South African town of Kimberley where the rock was first found.
1.4 Class
Sedimentary Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Banded
Porphyritic
2.2 Color
Beige, Black, Blue, Brown, Grey, Red, White, Yellow
Black, Bluish - Grey, Brown, Dark Greenish - Grey, Green, Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Fibrous
Dull and Banded
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
Countertops, Decorative Aggregates, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, Paving Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate, Raw material for the manufacture of mortar
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Not Yet Used
Taken as a Supplement for Calcium or Magnesium
3.3 Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture, Small Figurines
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Creating Artwork, Gemstone, Jewelry, Paper Industry, Pottery
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
4 Types
4.1 Types
Not Available
Basaltic Kimberlites and Micaceous Kimberlites
4.2 Features
Stalactites and stalagmites are formed from this rock, Surfaces are often shiny, Very fine grained rock
Always found as volcanic pipes over deep continental crust, Host rock for Diamond, Is one of the oldest rock, Surfaces are often shiny
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Colosseum in Rome, Italy, Sacré Coeur in Paris, France, Trevi Fountain in Rome, Italy
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Present
Absent
5 Formation
5.1 Formation
Travertine is a type of sedimentary rock formed when a river carries or transports pieces of broken rock which then undergo sedimentation. They are then subjected to high temperature and pressure hence forming travertine rock.
Kimberlite is an igneous rock and is the main source of diamonds. Its formation takes place deep beneath the Earth’s surface between 150 to 450 kilometres, and are erupted rapidly and violently.
5.2 Composition
5.2.1 Mineral Content
Calcite, Clay, Feldspar, Micas, Quartz
Garnet, Olivine, Phlogopite, Pyroxene
5.2.2 Compound Content
Ca, NaCl, CaO, Oxygen
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Not Applicable
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3-46-7
Coal
1 7
6.1.2 Grain Size
Fine Grained
Fine to Coarse Grained
6.1.3 Fracture
Splintery
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Highly Porous
Very Less Porous
6.1.6 Luster
Dull to Pearly
Subvitreous to Dull
6.1.7 Compressive Strength
80.00 N/mm2NA
Obsidian
0.15 450
6.1.8 Cleavage
Non-Existent
Conchoidal
6.1.9 Toughness
1
Not Available
6.1.10 Specific Gravity
1.682.86-2.87
Granite
0 8.4
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
2.71 g/cm32.95-2.96 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
1.09 kJ/Kg K0.92 kJ/Kg K
Granulite
0.14 3.2
6.2.2 Resistance
Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, Russia
Russia
7.1.2 Africa
Not Yet Found
Angola, Botswana, Cameroon, Ethiopia, South Africa
7.1.3 Europe
Austria, Italy, Portugal, United Kingdom
England, Hungary, Iceland, United Kingdom
7.1.4 Others
Not Yet Found
Antarctica
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, USA
7.2.2 South America
Argentina, Bolivia, Ecuador
Argentina, Colombia, Ecuador
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New South Wales, New Zealand, South Australia, Western Australia

Travertine vs Kimberlite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Travertine and Kimberlite Reserves. Travertine is a mineral consisting of layered calcium carbonate formed by deposition from spring waters. Kimberlite is a rare, blue-tinged, coarse-grained intrusive igneous rock, which sometimes contains diamonds and is mostly found in South Africa and Siberia.. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Travertine vs Kimberlite information and Travertine vs Kimberlite characteristics in the upcoming sections.

Travertine vs Kimberlite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Travertine vs Kimberlite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Travertine and Properties of Kimberlite. Learn more about Travertine vs Kimberlite in the next section. The interior uses of Travertine include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration whereas the interior uses of Kimberlite include Countertops, Decorative aggregates, Homes and Interior decoration. Due to some exceptional properties of Travertine and Kimberlite, they have various applications in construction industry. The uses of Travertine in construction industry include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate, Raw material for the manufacture of mortar and that of Kimberlite include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories.

More about Travertine and Kimberlite

Here you can know more about Travertine and Kimberlite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Travertine and Kimberlite consists of mineral content and compound content. The mineral content of Travertine includes Calcite, Clay, Feldspar, Micas, Quartz and mineral content of Kimberlite includes Garnet, Olivine, Phlogopite, Pyroxene. You can also check out the list of all Sedimentary Rocks. When we have to compare Travertine vs Kimberlite, the texture, color and appearance plays an important role in determining the type of rock. Travertine is available in beige, black, blue, brown, grey, red, white, yellow colors whereas, Kimberlite is available in black, bluish - grey, brown, dark greenish - grey, green, grey colors. Appearance of Travertine is Fibrous and that of Kimberlite is Dull and Banded. Properties of rock is another aspect for Travertine vs Kimberlite. The hardness of Travertine is 3-4 and that of Kimberlite is 6-7. The types of Travertine are Not Available whereas types of Kimberlite are Basaltic Kimberlites and Micaceous Kimberlites. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Travertine and Kimberlite is white. The specific heat capacity of Travertine is 1.09 kJ/Kg K and that of Kimberlite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Travertine is impact resistant, pressure resistant, wear resistant whereas Kimberlite is heat resistant, impact resistant.