Home
Compare Rocks


Trachyte vs Borolanite


Borolanite vs Trachyte


Definition

Definition
Trachyte is a grey fine-grained volcanic rock which mainly consists of alkali feldspar   
Borolanite is a variety of Nepheline Syenite and belongs to igneous rocks and contains nepheline-alkali feldspar pseudomorphs which occur as conspicuous white spots in the dark rock matrix   

History
  
  

Origin
Unknown   
Scotland   

Discoverer
Alexandre Brongniart and René Just Haüy   
Unknown   

Etymology
From Greek trakhus rough’ or trakhutēs roughness   
From Alkalic Igneous complex near Loch Borralan in northwest Scotland   

Class
Igneous Rocks   
Igneous Rocks   

Sub-Class
Durable Rock, Medium Hardness Rock   
Durable Rock, Medium Hardness Rock   

Family
  
  

Group
Volcanic   
Plutonic   

Other Categories
Fine Grained Rock, Opaque Rock   
Fine Grained Rock, Opaque Rock   

Texture

Texture
Aphanitic to Porphyritic   
Granular   

Color
Black, Brown, Dark Greenish - Grey, Green, Grey, Light to Dark Grey, White   
Brown, Buff, Cream, Green, Grey, Pink, White   

Maintenance
Less   
Less   

Durability
Durable   
Durable   

Water Resistant
Yes   
Yes   

Scratch Resistant
Yes   
No   

Stain Resistant
Yes   
No   

Wind Resistant
Yes   
Yes   

Acid Resistant
No   
Yes   

Appearance
Banded   
Banded and Foilated   

Uses

Architecture
  
  

Interior Uses
Decorative Aggregates, Flooring, Homes, Interior Decoration   
Countertops, Decorative Aggregates, Flooring, Homes, Interior Decoration   

Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings   
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings   

Other Architectural Uses
Curbing   
Curbing   

Industry
  
  

Construction Industry
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories   
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics   

Medical Industry
Not Yet Used   
Not Yet Used   

Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines   
Artifacts   

Other Uses
  
  

Commercial Uses
Cemetery Markers, Creating Artwork   
Cemetery Markers   

Types

Types
Not Available   
Not Available   

Features
Available in Lots of Colors and Patterns, Is one of the oldest rock, Matrix variable   
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock   

Archaeological Significance
  
  

Monuments
Used   
Used   

Famous Monuments
Data Not Available   
Data Not Available   

Sculpture
Used   
Used   

Famous Sculptures
Data Not Available   
Data Not Available   

Pictographs
Used   
Used   

Petroglyphs
Used   
Used   

Figurines
Used   
Used   

Fossils
Absent   
Absent   

Formation

Formation
Trachyte is an igneous volcanic rock with an aphanitic to porphyritic texture. It is the volcanic equivalent of syenite rock and forms as a result of magmatic differentiation.   
Borolanites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.   

Composition
  
  

Mineral Content
Augite, Biotite, Feldspar, Hornblade, Plagioclase, Quartz   
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite   

Compound Content
Potassium Oxide, Sodium Oxide, Silicon Dioxide   
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide   

Transformation
  
  

Metamorphism
Yes   
Yes   

Types of Metamorphism
Cataclastic Metamorphism, Contact Metamorphism, Regional Metamorphism   
Regional Metamorphism   

Weathering
Yes   
Yes   

Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering   
Chemical Weathering, Mechanical Weathering   

Erosion
Yes   
Yes   

Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion   
Wind Erosion   

Properties

Physical Properties
  
  

Hardness
6   
5.5-6   

Grain Size
Fine Grained   
Fine Grained   

Fracture
Not Available   
Conchoidal to Uneven   

Streak
White   
White   

Porosity
Less Porous   
Less Porous   

Luster
Metallic   
Greasy to Dull   

Compressive Strength
150.00 N/mm2   
14
150.00 N/mm2   
14

Cleavage
Not Available   
Poor   

Toughness
Not Available   
Not Available   

Specific Gravity
2.7   
2.6   

Transparency
Opaque   
Translucent to Opaque   

Density
2.43-2.45 g/cm3   
2.6 g/cm3   

Thermal Properties
  
  

Resistance
Heat Resistant, Impact Resistant, Wear Resistant   
Heat Resistant, Impact Resistant, Wear Resistant   

Reserves

Deposits in Eastern Continents
  
  

Asia
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam   
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam   

Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa   
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa   

Europe
Bulgaria, England, Germany, Norway, Romania, Switzerland   
Andorra, Finland, France, Great Britain, Italy, Norway, Portugal, Spain, Sweden   

Others
Not Yet Found   
Greenland   

Deposits in Western Continents
  
  

North America
USA   
Canada, USA   

South America
Brazil, Chile   
Brazil, Chile, Colombia, Uruguay, Venezuela   

Deposits in Oceania Continent
  
  

Australia
New Zealand, Queensland, South Australia, Western Australia   
New Zealand, Queensland, South Australia, Tasmania, Western Australia   

Definition >>
<< All

Trachyte vs Borolanite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Trachyte and Borolanite Reserves. Trachyte is a grey fine-grained volcanic rock which mainly consists of alkali feldspar. Borolanite is a variety of Nepheline Syenite and belongs to igneous rocks and contains nepheline-alkali feldspar pseudomorphs which occur as conspicuous white spots in the dark rock matrix. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Trachyte vs Borolanite information and Trachyte vs Borolanite characteristics in the upcoming sections.

Compare Igneous Rocks

Trachyte vs Borolanite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Trachyte vs Borolanite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Trachyte and Properties of Borolanite. Learn more about Trachyte vs Borolanite in the next section. The interior uses of Trachyte include Decorative aggregates, Flooring, Homes and Interior decoration whereas the interior uses of Borolanite include Countertops, Decorative aggregates, Flooring, Homes and Interior decoration. Due to some exceptional properties of Trachyte and Borolanite, they have various applications in construction industry. The uses of Trachyte in construction industry include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories and that of Borolanite include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics.

More about Trachyte and Borolanite

Here you can know more about Trachyte and Borolanite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Trachyte and Borolanite consists of mineral content and compound content. The mineral content of Trachyte includes Augite, Biotite, Feldspar, Hornblade, Plagioclase, Quartz and mineral content of Borolanite includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite. You can also check out the list of all Igneous Rocks. When we have to compare Trachyte vs Borolanite, the texture, color and appearance plays an important role in determining the type of rock. Trachyte is available in black, brown, dark greenish - grey, green, grey, light to dark grey, white colors whereas, Borolanite is available in brown, buff, cream, green, grey, pink, white colors. Appearance of Trachyte is Banded and that of Borolanite is Banded and Foilated. Properties of rock is another aspect for Trachyte vs Borolanite. The hardness of Trachyte is 6 and that of Borolanite is 5.5-6. The types of Trachyte are Not Available whereas types of Borolanite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Trachyte and Borolanite is white. The specific heat capacity of Trachyte is Not Available and that of Borolanite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Trachyte is heat resistant, impact resistant, wear resistant whereas Borolanite is heat resistant, impact resistant, wear resistant.

Igneous Rocks

Igneous Rocks

» More Igneous Rocks

Compare Igneous Rocks

» More Compare Igneous Rocks