Home
×

Syenite
Syenite

Lignite
Lignite



ADD
Compare
X
Syenite
X
Lignite

Syenite vs Lignite

Add ⊕
1 Definition
1.1 Definition
Syenite is a coarse-grained igneous rock which is composed mainly of alkali feldspar and various ferromagnesian minerals
Lignite is a soft brownish coal which shows traces of plants and is intermediate between bituminous coal and peat
1.2 History
1.2.1 Origin
Unknown
France
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From French syénite, from Latin Syenites (lapis ) (stone) of Syene
From French, Latin lignum wood + -ite1
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Plutonic
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy
Amorphous, Glassy
2.2 Color
Brown, Buff, Cream, Green, Grey, Pink, White
Black, Brown, Dark Brown, Grey, Light to Dark Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Banded and Foilated
Veined or Pebbled
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Flooring, Homes, Hotels, Interior Decoration
Not Yet Used
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
Not Yet Used
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
for Road Aggregate, Steel Production
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Not Yet Used
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Creating Artwork
Electricity Generation
4 Types
4.1 Types
Shonkinite
Xyloid Lignite or Fossil Wood and Compact Lignite or Perfect Lignite
4.2 Features
Available in Lots of Colors and Patterns, Is one of the oldest rock, Matrix variable
Generally rough to touch, Helps in production of Heat and Electricity, Used as fossil fuel
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Syenites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.
Coal formation takes place due to accumulation of plant debris in a swamp environment. The Coal formation process continues, as peat turns into lignite brown or black coal at increasing heat and pressure.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz
Not Available
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Carbon, Hydrogen, Nitrogen, Oxygen, Sulphur
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Not Applicable
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5.5-6
1
6.1.2 Grain Size
Medium to Fine Coarse Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Not Available
Conchoidal
6.1.4 Streak
White
Black
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Subvitreous to Dull
Dull to Vitreous to Submetallic
6.1.7 Compressive Strength
Flint
150.00 N/mm2
Rank: 14 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Non-Existent
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
2.6-2.7
1.1-1.4
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.6-2.8 g/cm3
800-801 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
1.26 kJ/Kg K
Rank: 5 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Wear Resistant
Heat Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
Bangladesh, Burma, Cambodia, China, India, Indonesia, Kazakhstan, Malaysia, Mongolia, Pakistan, Turkey, Vietnam
7.1.2 Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
Botswana, Kenya, Morocco, Mozambique, South Africa, Tanzania
7.1.3 Europe
Bulgaria, England, Germany, Norway, Romania, Switzerland
Belgium, Bulgaria, England, France, Germany, Greece, Hungary, Kosovo, Netherlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, The Czech Republic, Ukraine, United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, Mexico, USA
7.2.2 South America
Brazil, Chile
Brazil, Chile, Colombia, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Queensland, South Australia, Western Australia
New South Wales, Queensland, Victoria

Syenite vs Lignite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Syenite and Lignite Reserves. Syenite is a coarse-grained igneous rock which is composed mainly of alkali feldspar and various ferromagnesian minerals. Lignite is a soft brownish coal which shows traces of plants and is intermediate between bituminous coal and peat. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Syenite vs Lignite information and Syenite vs Lignite characteristics in the upcoming sections.

Syenite vs Lignite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Syenite vs Lignite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Syenite and Properties of Lignite. Learn more about Syenite vs Lignite in the next section. The interior uses of Syenite include Flooring, Homes, Hotels and Interior decoration whereas the interior uses of Lignite include Not yet used. Due to some exceptional properties of Syenite and Lignite, they have various applications in construction industry. The uses of Syenite in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories and that of Lignite include For road aggregate, Steel production.

More about Syenite and Lignite

Here you can know more about Syenite and Lignite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Syenite and Lignite consists of mineral content and compound content. The mineral content of Syenite includes Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz and mineral content of Lignite is not available. You can also check out the list of all Igneous Rocks. When we have to compare Syenite vs Lignite, the texture, color and appearance plays an important role in determining the type of rock. Syenite is available in brown, buff, cream, green, grey, pink, white colors whereas, Lignite is available in black, brown, dark brown, grey, light to dark grey colors. Appearance of Syenite is Banded and Foilated and that of Lignite is Veined or Pebbled. Properties of rock is another aspect for Syenite vs Lignite. The hardness of Syenite is 5.5-6 and that of Lignite is 1. The types of Syenite are Shonkinite whereas types of Lignite are Xyloid Lignite or Fossil Wood and Compact Lignite or Perfect Lignite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Syenite is white while that of Lignite is black. The specific heat capacity of Syenite is 0.92 kJ/Kg K and that of Lignite is 1.26 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Syenite is heat resistant, impact resistant, wear resistant whereas Lignite is heat resistant.