Home
×

Syenite
Syenite

Laterite
Laterite



ADD
Compare
X
Syenite
X
Laterite

Syenite vs Laterite

Add ⊕
1 Definition
1.1 Definition
Syenite is a coarse-grained igneous rock which is composed mainly of alkali feldspar and various ferromagnesian minerals
Laterite rock is a type of Sedimentary rock which is rich in iron and aluminium, formed in hot and wet tropical areas
1.2 History
1.2.1 Origin
Unknown
India
1.2.2 Discoverer
Unknown
Francis Buchanan-Hamilton
1.3 Etymology
From French syénite, from Latin Syenites (lapis ) (stone) of Syene
From Latin later brick, tile + -ite1
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Plutonic
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy
Earthy, Massive, Porphyritic
2.2 Color
Brown, Buff, Cream, Green, Grey, Pink, White
Brown, Buff, Red
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Banded and Foilated
Rough and Banded
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Flooring, Homes, Hotels, Interior Decoration
Decorative Aggregates, Flooring, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
Cobblestones, for Road Aggregate, Landscaping, Roadstone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Creating Artwork
An Oil and Gas Reservoir, Source of bauxite, Used in aquariums
4 Types
4.1 Types
Shonkinite
Not Available
4.2 Features
Available in Lots of Colors and Patterns, Is one of the oldest rock, Matrix variable
Is one of the oldest rock, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Syenites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.
Laterite is a type of sedimentary rock which is generally a reddish weathering product of basalt.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz
Aluminum Oxides, Biotite, Hematite, Hornblade, Iron Oxides, Manganese Oxides, Micas, Muscovite or Illite, Plagioclase, Pyroxene
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Not Applicable
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5.5-6
2
6.1.2 Grain Size
Medium to Fine Coarse Grained
Fine Grained
6.1.3 Fracture
Not Available
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Subvitreous to Dull
Dull
6.1.7 Compressive Strength
Flint
150.00 N/mm2
Rank: 14 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Not Applicable
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
2.6-2.7
Not Available
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.6-2.8 g/cm3
Not Available
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Wear Resistant
Heat Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
India
7.1.2 Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
East Africa, Western Africa
7.1.3 Europe
Bulgaria, England, Germany, Norway, Romania, Switzerland
England, Romania, Scotland
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, USA
7.2.2 South America
Brazil, Chile
Not Yet Found
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Queensland, South Australia, Western Australia
Central Australia, Western Australia

Syenite vs Laterite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Syenite and Laterite Reserves. Syenite is a coarse-grained igneous rock which is composed mainly of alkali feldspar and various ferromagnesian minerals. Laterite rock is a type of Sedimentary rock which is rich in iron and aluminium, formed in hot and wet tropical areas. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Syenite vs Laterite information and Syenite vs Laterite characteristics in the upcoming sections.

Syenite vs Laterite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Syenite vs Laterite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Syenite and Properties of Laterite. Learn more about Syenite vs Laterite in the next section. The interior uses of Syenite include Flooring, Homes, Hotels and Interior decoration whereas the interior uses of Laterite include Decorative aggregates, Flooring and Interior decoration. Due to some exceptional properties of Syenite and Laterite, they have various applications in construction industry. The uses of Syenite in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories and that of Laterite include Cobblestones, For road aggregate, Landscaping, Roadstone.

More about Syenite and Laterite

Here you can know more about Syenite and Laterite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Syenite and Laterite consists of mineral content and compound content. The mineral content of Syenite includes Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz and mineral content of Laterite includes Aluminum Oxides, Biotite, Hematite, Hornblade, Iron Oxides, Manganese Oxides, Micas, Muscovite or Illite, Plagioclase, Pyroxene. You can also check out the list of all Igneous Rocks. When we have to compare Syenite vs Laterite, the texture, color and appearance plays an important role in determining the type of rock. Syenite is available in brown, buff, cream, green, grey, pink, white colors whereas, Laterite is available in brown, buff, red colors. Appearance of Syenite is Banded and Foilated and that of Laterite is Rough and Banded. Properties of rock is another aspect for Syenite vs Laterite. The hardness of Syenite is 5.5-6 and that of Laterite is 2. The types of Syenite are Shonkinite whereas types of Laterite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Syenite and Laterite is white. The specific heat capacity of Syenite is 0.92 kJ/Kg K and that of Laterite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Syenite is heat resistant, impact resistant, wear resistant whereas Laterite is heat resistant, pressure resistant.