Home
×

Laterite
Laterite

Anorthosite
Anorthosite



ADD
Compare
X
Laterite
X
Anorthosite

Laterite vs Anorthosite

1 Definition
1.1 Definition
Laterite rock is a type of Sedimentary rock which is rich in iron and aluminium, formed in hot and wet tropical areas
Anorthosite is a granular igneous rock composed largely of labradorite or plagioclase
1.2 History
1.2.1 Origin
India
Unknown
1.2.2 Discoverer
Francis Buchanan-Hamilton
Unknown
1.3 Etymology
From Latin later brick, tile + -ite1
From French anorthose plagioclase + -ite1
1.4 Class
Sedimentary Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Plutonic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy, Massive, Porphyritic
Foliated, Glassy
2.2 Color
Brown, Buff, Red
Black, Bluish - Grey, Brown, Green, Grey, Light Greenish Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
59% Sedimentary Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
62% Sedimentary Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
43% Sedimentary Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
38% Sedimentary Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
22% Sedimentary Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Rough and Banded
Layered, Banded, Veined and Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Flooring, Interior Decoration
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
As Building Stone, As Facing Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
Cobblestones, for Road Aggregate, Landscaping, Roadstone
As Dimension Stone, Cement Manufacture, for Road Aggregate
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, Source of bauxite, Used in aquariums
Creating Artwork, Curling
4 Types
4.1 Types
Not Available
Proterozoic Anorthosite and Archean Anorthosite
4.2 Features
Is one of the oldest rock, Very fine grained rock
Generally rough to touch, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Present
Absent
5 Formation
5.1 Formation
Laterite is a type of sedimentary rock which is generally a reddish weathering product of basalt.
Anorthosite is a phaneritic, intrusive igneous rock which is characterized by a predominance of plagioclase feldspar which is almost 90–100%, and a minimal mafic component.
5.2 Composition
5.2.1 Mineral Content
Aluminum Oxides, Biotite, Hematite, Hornblade, Iron Oxides, Manganese Oxides, Micas, Muscovite or Illite, Plagioclase, Pyroxene
Amphibole, Clinopyroxene, Ilmenite, Magnetite, Olivine, Orthopyroxene
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Ca, CaO, Chromium(III) Oxide, MgO, Sulfur Trioxide
5.3 Transformation
5.3.1 Metamorphism
19% Sedimentary Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Not Applicable
Cataclastic Metamorphism, Contact Metamorphism
5.3.3 Weathering
78% Sedimentary Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering
Biological Weathering
5.3.5 Erosion
86% Sedimentary Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
2
5-6
6.1.2 Grain Size
Fine Grained
Coarse Grained
6.1.3 Fracture
Conchoidal
Irregular
6.1.4 Streak
White
White
6.1.5 Porosity
Highly Porous
Less Porous
6.1.6 Luster
Dull
Pearly to Subvitreous
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Not Applicable
Irregular
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
Not Available
2.62-2.82
6.1.11 Transparency
Opaque
Translucent
6.1.12 Density
Not Available
2.7-4 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.84 kJ/Kg K
Rank: 15 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Scratch Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India
Not Yet Found
7.1.2 Africa
East Africa, Western Africa
Not Yet Found
7.1.3 Europe
England, Romania, Scotland
Bulgaria, France, Germany, Greece, Hungary, Italy, Latvia, Lithuania, Malta, Poland, Portugal, Romania, Slovenia, Spain, Sweden, The Czech Republic
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada
7.2.2 South America
Not Yet Found
Bolivia, Colombia
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, Western Australia
Central Australia, South Australia, Western Australia

Laterite vs Anorthosite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Laterite and Anorthosite Reserves. Laterite rock is a type of Sedimentary rock which is rich in iron and aluminium, formed in hot and wet tropical areas. Anorthosite is a granular igneous rock composed largely of labradorite or plagioclase. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Laterite vs Anorthosite information and Laterite vs Anorthosite characteristics in the upcoming sections.

Laterite vs Anorthosite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Laterite vs Anorthosite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Laterite and Properties of Anorthosite. Learn more about Laterite vs Anorthosite in the next section. The interior uses of Laterite include Decorative aggregates, Flooring and Interior decoration whereas the interior uses of Anorthosite include Decorative aggregates, Floor tiles, Homes and Interior decoration. Due to some exceptional properties of Laterite and Anorthosite, they have various applications in construction industry. The uses of Laterite in construction industry include Cobblestones, For road aggregate, Landscaping, Roadstone and that of Anorthosite include As dimension stone, Cement manufacture, For road aggregate.

More about Laterite and Anorthosite

Here you can know more about Laterite and Anorthosite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Laterite and Anorthosite consists of mineral content and compound content. The mineral content of Laterite includes Aluminum Oxides, Biotite, Hematite, Hornblade, Iron Oxides, Manganese Oxides, Micas, Muscovite or Illite, Plagioclase, Pyroxene and mineral content of Anorthosite includes Amphibole, Clinopyroxene, Ilmenite, Magnetite, Olivine, Orthopyroxene. You can also check out the list of all Sedimentary Rocks. When we have to compare Laterite vs Anorthosite, the texture, color and appearance plays an important role in determining the type of rock. Laterite is available in brown, buff, red colors whereas, Anorthosite is available in black, bluish - grey, brown, green, grey, light greenish grey, pink, white colors. Appearance of Laterite is Rough and Banded and that of Anorthosite is Layered, Banded, Veined and Shiny. Properties of rock is another aspect for Laterite vs Anorthosite. The hardness of Laterite is 2 and that of Anorthosite is 5-6. The types of Laterite are Not Available whereas types of Anorthosite are Proterozoic Anorthosite and Archean Anorthosite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Laterite and Anorthosite is white. The specific heat capacity of Laterite is Not Available and that of Anorthosite is 0.84 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Laterite is heat resistant, pressure resistant whereas Anorthosite is heat resistant, impact resistant, pressure resistant, scratch resistant, wear resistant.