×

Serpentinite
Serpentinite

Litchfieldite
Litchfieldite



ADD
Compare
X
Serpentinite
X
Litchfieldite

Serpentinite vs Litchfieldite

1 Definition
1.1 Definition
A hydration and metamorphic transformation of ultramafic rock from the Earth's mantle is called as serpentinization, a group of minerals is formed by serpentinization compose rock 'serpentinite'.
Litchfieldite is a rare igneous rock which is coarse-grained, foliated and a variety of nepheline syenite, sometimes also called as nepheline syenite gneiss or gneissic nepeheline syenite
1.2 History
1.2.1 Origin
USA
USA
1.2.2 Discoverer
Unknown
Bayley
1.3 Etymology
From English word serpentinization.
From its occurrence at Litchfield, Maine, USA
1.4 Class
Metamorphic Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Plutonic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy
Granular
2.2 Color
Black, Brown, Colourless, Green, Grey, White
Brown, Buff, Cream, Green, Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Rough and Dull
Banded and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Countertops, Decorative Aggregates, Flooring, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Commemorative Tablets, Creating Artwork
Creating Artwork
4 Types
4.1 Types
Jadeitite
Borolanite and Litchfieldite
4.2 Features
Host Rock for Lead
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Due to change in environmental conditions, rocks are heated and pressurized deep inside the Earth's surface. Serpentinite is formed from the extreme heat caused by magma or by the intense collisions and friction of tectonic plates.
Litchfieldite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
5.2 Composition
5.2.1 Mineral Content
Carbonate, Magnetite, Pyrrhotite, Serpentine, Sulfides
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite
5.2.2 Compound Content
Ca, CaO, Carbon Dioxide, KCl, MgO, Sulfur Dioxide, Sulphur
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Not Applicable
Biological Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Wind Erosion
Coastal Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3-55.5-6
Coal
1 7
6.1.2 Grain Size
Very fine-grained
Coarse Grained
6.1.3 Fracture
Uneven
Conchoidal to Uneven
6.1.4 Streak
White, Greenish White or Grey
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Waxy and Dull
Greasy to Dull
6.1.7 Compressive Strength
310.00 N/mm2150.00 N/mm2
Obsidian
0.15 450
6.1.8 Cleavage
Irregular
Poor
6.1.9 Toughness
7
Not Available
6.1.10 Specific Gravity
2.79-32.6
Granite
0 8.4
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
2.5-3 g/cm32.6 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
0.95 kJ/Kg KNA
Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant
Heat Resistant, Impact Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Saudi Arabia, Singapore, South Korea
Not Yet Found
7.1.2 Africa
Ethiopia, Western Africa
South Africa
7.1.3 Europe
England, Georgia, Switzerland, United Kingdom
Finland, Norway, Portugal
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada
Canada
7.2.2 South America
Colombia
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, New South Wales, New Zealand, Western Australia
Not Yet Found

Serpentinite vs Litchfieldite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Serpentinite and Litchfieldite Reserves. A hydration and metamorphic transformation of ultramafic rock from the Earth's mantle is called as serpentinization, a group of minerals is formed by serpentinization compose rock 'serpentinite'.. Litchfieldite is a rare igneous rock which is coarse-grained, foliated and a variety of nepheline syenite, sometimes also called as nepheline syenite gneiss or gneissic nepeheline syenite. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Serpentinite vs Litchfieldite information and Serpentinite vs Litchfieldite characteristics in the upcoming sections.

Serpentinite vs Litchfieldite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Serpentinite vs Litchfieldite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Serpentinite and Properties of Litchfieldite. Learn more about Serpentinite vs Litchfieldite in the next section. The interior uses of Serpentinite include Decorative aggregates and Interior decoration whereas the interior uses of Litchfieldite include Countertops, Decorative aggregates, Flooring and Interior decoration. Due to some exceptional properties of Serpentinite and Litchfieldite, they have various applications in construction industry. The uses of Serpentinite in construction industry include As dimension stone, Cement manufacture, For road aggregate, Making natural cement and that of Litchfieldite include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics.

More about Serpentinite and Litchfieldite

Here you can know more about Serpentinite and Litchfieldite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Serpentinite and Litchfieldite consists of mineral content and compound content. The mineral content of Serpentinite includes Carbonate, Magnetite, Pyrrhotite, Serpentine, Sulfides and mineral content of Litchfieldite includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite. You can also check out the list of all Metamorphic Rocks. When we have to compare Serpentinite vs Litchfieldite, the texture, color and appearance plays an important role in determining the type of rock. Serpentinite is available in black, brown, colourless, green, grey, white colors whereas, Litchfieldite is available in brown, buff, cream, green, grey, pink, white colors. Appearance of Serpentinite is Rough and Dull and that of Litchfieldite is Banded and Foilated. Properties of rock is another aspect for Serpentinite vs Litchfieldite. The hardness of Serpentinite is 3-5 and that of Litchfieldite is 5.5-6. The types of Serpentinite are Jadeitite whereas types of Litchfieldite are Borolanite and Litchfieldite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Serpentinite and Litchfieldite is white, greenish white or grey. The specific heat capacity of Serpentinite is 0.95 kJ/Kg K and that of Litchfieldite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Serpentinite is heat resistant whereas Litchfieldite is heat resistant, impact resistant, wear resistant.