Home
×

Schist
Schist

Benmoreite
Benmoreite



ADD
Compare
X
Schist
X
Benmoreite

Schist vs Benmoreite

Add ⊕
1 Definition
1.1 Definition
Schist is a medium grade metamorphic rock with medium to large, flat, sheet like grains in a preferred orientation
An iron rich extrusive rock found as a member of the alkali basalt magma series
1.2 History
1.2.1 Origin
Unknown
Isle of Mull, Scotland
1.2.2 Discoverer
Unknown
Ben More
1.3 Etymology
From French schiste, Greek skhistos i.e. split
From the name of discoverer, Ben More
1.4 Class
Metamorphic Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Foliated, Platy
Glassy, Massive, Porphyritic, Scoriaceous, Trachytic, Vesicular
2.2 Color
Black, Blue, Brown, Dark Brown, Green, Grey, Silver
Black, Brown, Light to Dark Grey
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Layered and Shiny
Rough and Dull
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Interior Decoration
Floor Tiles, Homes, Hotels, Kitchens
3.1.2 Exterior Uses
Garden Decoration, Paving Stone
As Building Stone, Paving Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Not Yet Used
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Building houses or walls, Cement Manufacture, for Road Aggregate, Roadstone
As Dimension Stone, Cobblestones, Rail Track Ballast, Roadstone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Used in aquariums, Writing Slates
Commemorative Tablets, Creating Artwork, Curling
4 Types
4.1 Types
Mica Schists, Calc-Silicate Schists, Graphite Schists, Blueschists, Whiteschists, Greenschists, Hornblende Schist, Talc Schist, Chlorite Schist, Garnet Schist, Glaucophane schist.
Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB) and Tholeiitic Basalt
4.2 Features
Easily splits into thin plates, Smooth to touch
Has High structural resistance against erosion and climate, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Schist formed by dynamic metamorphism at high temperatures and pressures that aligns the grains of mica, hornblende and other elongated minerals into thin layers.
Benmoreite is a type of Igneous rock which is formed through the cooling and solidification of lava or magma. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
5.2 Composition
5.2.1 Mineral Content
Alusite, Amphibole, Biotite, Chlorite, Epidote, Feldspar, Garnet, Graphite, Hornblade, Kyanite, Micas, Muscovite or Illite, Porphyroblasts, Quartz, Sillimanite, Staurolite, Talc
Alkali feldspar, Biotite, Olivine, Plagioclase, Pyroxene, Sodic plagioclase
5.2.2 Compound Content
CaO, Carbon Dioxide, MgO
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Not Applicable
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3.5-4
6
6.1.2 Grain Size
Medium to Fine Coarse Grained
Fine Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
White
Black
6.1.5 Porosity
Highly Porous
Less Porous
6.1.6 Luster
Shiny
Earthy
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
37.40 N/mm2
Rank: 28 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Slaty
Perfect
6.1.9 Toughness
1.5
2.3
6.1.10 Specific Gravity
2.5-2.9
2.8-3
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.8-2.9 g/cm3
2.9-3.1 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.84 kJ/Kg K
Rank: 15 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Impact Resistant, Pressure Resistant, Water Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Afghanistan, Bangladesh, Bhutan, China, India, Japan, Kazakhstan, Malaysia, Pakistan, Russia, Thailand, Turkey, Vietnam
India, Russia
7.1.2 Africa
Egypt, Ethiopia, Morocco, Nigeria, South Africa
South Africa
7.1.3 Europe
Austria, England, France, Georgia, Germany, Italy, Liechtenstein, Monaco, Norway, Slovenia, Spain, Sweden, Switzerland
Iceland
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Costa Rica, Cuba, Mexico, Panama, USA
Canada, USA
7.2.2 South America
Brazil, Colombia, Guyana
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, Queensland
Not Yet Found

Schist vs Benmoreite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Schist and Benmoreite Reserves. Schist is a medium grade metamorphic rock with medium to large, flat, sheet like grains in a preferred orientation. An iron rich extrusive rock found as a member of the alkali basalt magma series. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Schist vs Benmoreite information and Schist vs Benmoreite characteristics in the upcoming sections.

Schist vs Benmoreite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Schist vs Benmoreite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Schist and Properties of Benmoreite. Learn more about Schist vs Benmoreite in the next section. The interior uses of Schist include Decorative aggregates, Floor tiles and Interior decoration whereas the interior uses of Benmoreite include Floor tiles, Homes, Hotels and Kitchens. Due to some exceptional properties of Schist and Benmoreite, they have various applications in construction industry. The uses of Schist in construction industry include As dimension stone, Building houses or walls, Cement manufacture, For road aggregate, Roadstone and that of Benmoreite include As dimension stone, Cobblestones, Rail track ballast, Roadstone.

More about Schist and Benmoreite

Here you can know more about Schist and Benmoreite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Schist and Benmoreite consists of mineral content and compound content. The mineral content of Schist includes Alusite, Amphibole, Biotite, Chlorite, Epidote, Feldspar, Garnet, Graphite, Hornblade, Kyanite, Micas, Muscovite or Illite, Porphyroblasts, Quartz, Sillimanite, Staurolite, Talc and mineral content of Benmoreite includes Alkali feldspar, Biotite, Olivine, Plagioclase, Pyroxene, Sodic plagioclase. You can also check out the list of all Metamorphic Rocks. When we have to compare Schist vs Benmoreite, the texture, color and appearance plays an important role in determining the type of rock. Schist is available in black, blue, brown, dark brown, green, grey, silver colors whereas, Benmoreite is available in black, brown, light to dark grey colors. Appearance of Schist is Layered and Shiny and that of Benmoreite is Rough and Dull. Properties of rock is another aspect for Schist vs Benmoreite. The hardness of Schist is 3.5-4 and that of Benmoreite is 6. The types of Schist are Mica Schists, Calc-Silicate Schists, Graphite Schists, Blueschists, Whiteschists, Greenschists, Hornblende Schist, Talc Schist, Chlorite Schist, Garnet Schist, Glaucophane schist. whereas types of Benmoreite are Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB) and Tholeiitic Basalt. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Schist is white while that of Benmoreite is black. The specific heat capacity of Schist is Not Available and that of Benmoreite is 0.84 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Schist is impact resistant, pressure resistant, water resistant whereas Benmoreite is heat resistant, pressure resistant, wear resistant.