Home
×

Benmoreite
Benmoreite

Phyllite
Phyllite



ADD
Compare
X
Benmoreite
X
Phyllite

Benmoreite vs Phyllite

1 Definition
1.1 Definition
An iron rich extrusive rock found as a member of the alkali basalt magma series
Phyllite is a fine-grained metamorphic rock with a well-developed laminar structure, and is intermediate between slate and schist rocks
1.2 History
1.2.1 Origin
Isle of Mull, Scotland
Unknown
1.2.2 Discoverer
Ben More
Unknown
1.3 Etymology
From the name of discoverer, Ben More
From Greek phullon leaf + -ite1
1.4 Class
Igneous Rocks
Metamorphic Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Glassy, Massive, Porphyritic, Scoriaceous, Trachytic, Vesicular
Phyllitic Sheen, Slaty
2.2 Color
Black, Brown, Light to Dark Grey
Black to Grey, Light Greenish Grey
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
81% Metamorphic Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
42% Metamorphic Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
19% Metamorphic Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
15% Metamorphic Rocks Rocks have it !
2.5 Appearance
Rough and Dull
Crinkled or Wavy
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Floor Tiles, Homes, Hotels, Kitchens
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, Paving Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cobblestones, Rail Track Ballast, Roadstone
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate, Raw material for the manufacture of mortar, Roadstone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Commemorative Tablets, Creating Artwork, Curling
Cemetery Markers, Commemorative Tablets, Creating Artwork, Writing Slates
4 Types
4.1 Types
Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB) and Tholeiitic Basalt
Not Available
4.2 Features
Has High structural resistance against erosion and climate, Very fine grained rock
Easily splits into thin plates, Is one of the oldest rock, Surfaces are often shiny
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Benmoreite is a type of Igneous rock which is formed through the cooling and solidification of lava or magma. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Phyllite is a metamorphic rock which is formed by regional metamorphism of argillaceous sediments since their cleavage arose due to deviatoric stress.
5.2 Composition
5.2.1 Mineral Content
Alkali feldspar, Biotite, Olivine, Plagioclase, Pyroxene, Sodic plagioclase
Albite, Alusite, Amphibole, Apatite, Biotite, Chlorite, Epidote, Feldspar, Garnet, Graphite, Hornblade, Kyanite, Micas, Muscovite or Illite, Porphyroblasts, Quartz, Sillimanite, Staurolite, Talc, Zircon
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
CaO, Carbon Dioxide, MgO
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
50% Metamorphic Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Not Applicable
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
65% Metamorphic Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
77% Metamorphic Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6
1-2
6.1.2 Grain Size
Fine Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
Black
White
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Earthy
Phyllitic
6.1.7 Compressive Strength
Flint
37.40 N/mm2
Rank: 28 (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Crenulation and Pervasive
6.1.9 Toughness
2.3
1.2
6.1.10 Specific Gravity
2.8-3
2.72-2.73
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.9-3.1 g/cm3
2.18-3.3 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.84 kJ/Kg K
Rank: 15 (Overall)
Not Available
Rank: N/A (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Pressure Resistant, Water Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Russia
Afghanistan, Bangladesh, Bhutan, China, India, Japan, Kazakhstan, Malaysia, Pakistan, Russia, Thailand, Turkey, Vietnam
7.1.2 Africa
South Africa
Egypt, Ethiopia, Morocco, Nigeria, South Africa
7.1.3 Europe
Iceland
Austria, England, France, Georgia, Germany, Italy, Liechtenstein, Monaco, Norway, Slovenia, Spain, Sweden, Switzerland
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, Costa Rica, Cuba, Mexico, Panama, USA
7.2.2 South America
Brazil
Brazil, Colombia, Guyana
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New South Wales, New Zealand, Queensland

Benmoreite vs Phyllite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Benmoreite and Phyllite Reserves. An iron rich extrusive rock found as a member of the alkali basalt magma series. Phyllite is a fine-grained metamorphic rock with a well-developed laminar structure, and is intermediate between slate and schist rocks. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Benmoreite vs Phyllite information and Benmoreite vs Phyllite characteristics in the upcoming sections.

Benmoreite vs Phyllite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Benmoreite vs Phyllite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Benmoreite and Properties of Phyllite. Learn more about Benmoreite vs Phyllite in the next section. The interior uses of Benmoreite include Floor tiles, Homes, Hotels and Kitchens whereas the interior uses of Phyllite include Decorative aggregates, Floor tiles, Homes and Interior decoration. Due to some exceptional properties of Benmoreite and Phyllite, they have various applications in construction industry. The uses of Benmoreite in construction industry include As dimension stone, Cobblestones, Rail track ballast, Roadstone and that of Phyllite include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate, Raw material for the manufacture of mortar, Roadstone.

More about Benmoreite and Phyllite

Here you can know more about Benmoreite and Phyllite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Benmoreite and Phyllite consists of mineral content and compound content. The mineral content of Benmoreite includes Alkali feldspar, Biotite, Olivine, Plagioclase, Pyroxene, Sodic plagioclase and mineral content of Phyllite includes Albite, Alusite, Amphibole, Apatite, Biotite, Chlorite, Epidote, Feldspar, Garnet, Graphite, Hornblade, Kyanite, Micas, Muscovite or Illite, Porphyroblasts, Quartz, Sillimanite, Staurolite, Talc, Zircon. You can also check out the list of all Igneous Rocks. When we have to compare Benmoreite vs Phyllite, the texture, color and appearance plays an important role in determining the type of rock. Benmoreite is available in black, brown, light to dark grey colors whereas, Phyllite is available in black to grey, light greenish grey colors. Appearance of Benmoreite is Rough and Dull and that of Phyllite is Crinkled or Wavy. Properties of rock is another aspect for Benmoreite vs Phyllite. The hardness of Benmoreite is 6 and that of Phyllite is 1-2. The types of Benmoreite are Alkaline Basalt, Boninite, High Alumina Basalt, Mid Ocean Ridge Basalt (MORB) and Tholeiitic Basalt whereas types of Phyllite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Benmoreite is black while that of Phyllite is white. The specific heat capacity of Benmoreite is 0.84 kJ/Kg K and that of Phyllite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Benmoreite is heat resistant, pressure resistant, wear resistant whereas Phyllite is heat resistant, pressure resistant, water resistant.

Let Others Know
×