Home
×

Phyllite
Phyllite

Tuff
Tuff



ADD
Compare
X
Phyllite
X
Tuff

Phyllite vs Tuff

Add ⊕
1 Definition
1.1 Definition
Phyllite is a fine-grained metamorphic rock with a well-developed laminar structure, and is intermediate between slate and schist rocks
Tuff is a type of rock made of volcanic ash ejected from a vent during a volcanic eruption
1.2 History
1.2.1 Origin
Unknown
Italy
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From Greek phullon leaf + -ite1
From a Latin word tophous then in Italian tufo and finally tuff
1.4 Class
Metamorphic Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Phyllitic Sheen, Slaty
Clastic, Pyroclastic
2.2 Color
Black to Grey, Light Greenish Grey
Brown, Grey, Yellow
2.3 Maintenance
More
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Crinkled or Wavy
Dull, Vesicular and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate, Raw material for the manufacture of mortar, Roadstone
Building houses or walls, Construction Aggregate
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Sculpture
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Commemorative Tablets, Creating Artwork, Writing Slates
Creating Artwork
4 Types
4.1 Types
Not Available
Welded tuff, Rhyolitic tuff, Basaltic tuff, Trachyte tuff, Andesitic tuff and Ignimbrite.
4.2 Features
Easily splits into thin plates, Is one of the oldest rock, Surfaces are often shiny
Always found as volcanic pipes over deep continental crust
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Easter Island in the Polynesian Triangle, Pacific Ocean
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Phyllite is a metamorphic rock which is formed by regional metamorphism of argillaceous sediments since their cleavage arose due to deviatoric stress.
Tuff is formed when large masses of ash and sand which are mixed with hot gases are ejected by a volcano and avalanche rapidly down its slopes.
5.2 Composition
5.2.1 Mineral Content
Albite, Alusite, Amphibole, Apatite, Biotite, Chlorite, Epidote, Feldspar, Garnet, Graphite, Hornblade, Kyanite, Micas, Muscovite or Illite, Porphyroblasts, Quartz, Sillimanite, Staurolite, Talc, Zircon
Calcite, Chlorite
5.2.2 Compound Content
CaO, Carbon Dioxide, MgO
Hydrogen Sulfide, Sulfur Dioxide
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Not Applicable
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
1-2
4-6
6.1.2 Grain Size
Medium to Fine Coarse Grained
Fine Grained
6.1.3 Fracture
Conchoidal
Uneven
6.1.4 Streak
White
White
6.1.5 Porosity
Highly Porous
Highly Porous
6.1.6 Luster
Phyllitic
Vitreous to Dull
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
243.80 N/mm2
Rank: 5 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Crenulation and Pervasive
Not Available
6.1.9 Toughness
1.2
Not Available
6.1.10 Specific Gravity
2.72-2.73
2.73
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.18-3.3 g/cm3
1-1.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.20 kJ/Kg K
Rank: 25 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Water Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Afghanistan, Bangladesh, Bhutan, China, India, Japan, Kazakhstan, Malaysia, Pakistan, Russia, Thailand, Turkey, Vietnam
Afghanistan, Armenia, Azerbaijan, Burma, Cambodia, China, India, Indonesia, Iran, Japan, Malaysia, Mongolia, Nepal, North Korea, Pakistan, Saudi Arabia, Syria, Taiwan, Thailand, Turkey, Vietnam, Yemen
7.1.2 Africa
Egypt, Ethiopia, Morocco, Nigeria, South Africa
Cameroon, Cape Verde, Eritrea, Ethiopia, Kenya, Libya, Madagascar, Nigeria, Rwanda, South Africa, Sudan, Uganda
7.1.3 Europe
Austria, England, France, Georgia, Germany, Italy, Liechtenstein, Monaco, Norway, Slovenia, Spain, Sweden, Switzerland
France, Georgia, Germany, Greece, Iceland, Italy, Netherlands, Poland, Portugal, Spain, United Kingdom
7.1.4 Others
Not Yet Found
Antarctica, Hawaii Islands
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Costa Rica, Cuba, Mexico, Panama, USA
Canada, Costa Rica, Panama, USA
7.2.2 South America
Brazil, Colombia, Guyana
Argentina, Bolivia, Brazil, Chile, Ecuador, Paraguay
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, Queensland
Central Australia, Western Australia

Phyllite vs Tuff Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Phyllite and Tuff Reserves. Phyllite is a fine-grained metamorphic rock with a well-developed laminar structure, and is intermediate between slate and schist rocks. Tuff is a type of rock made of volcanic ash ejected from a vent during a volcanic eruption. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Phyllite vs Tuff information and Phyllite vs Tuff characteristics in the upcoming sections.

Phyllite vs Tuff Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Phyllite vs Tuff characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Phyllite and Properties of Tuff. Learn more about Phyllite vs Tuff in the next section. The interior uses of Phyllite include Decorative aggregates, Floor tiles, Homes and Interior decoration whereas the interior uses of Tuff include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration. Due to some exceptional properties of Phyllite and Tuff, they have various applications in construction industry. The uses of Phyllite in construction industry include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate, Raw material for the manufacture of mortar, Roadstone and that of Tuff include Building houses or walls, Construction aggregate.

More about Phyllite and Tuff

Here you can know more about Phyllite and Tuff. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Phyllite and Tuff consists of mineral content and compound content. The mineral content of Phyllite includes Albite, Alusite, Amphibole, Apatite, Biotite, Chlorite, Epidote, Feldspar, Garnet, Graphite, Hornblade, Kyanite, Micas, Muscovite or Illite, Porphyroblasts, Quartz, Sillimanite, Staurolite, Talc, Zircon and mineral content of Tuff includes Calcite, Chlorite. You can also check out the list of all Metamorphic Rocks. When we have to compare Phyllite vs Tuff, the texture, color and appearance plays an important role in determining the type of rock. Phyllite is available in black to grey, light greenish grey colors whereas, Tuff is available in brown, grey, yellow colors. Appearance of Phyllite is Crinkled or Wavy and that of Tuff is Dull, Vesicular and Foilated. Properties of rock is another aspect for Phyllite vs Tuff. The hardness of Phyllite is 1-2 and that of Tuff is 4-6. The types of Phyllite are Not Available whereas types of Tuff are Welded tuff, Rhyolitic tuff, Basaltic tuff, Trachyte tuff, Andesitic tuff and Ignimbrite.. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Phyllite and Tuff is white. The specific heat capacity of Phyllite is Not Available and that of Tuff is 0.20 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Phyllite is heat resistant, pressure resistant, water resistant whereas Tuff is heat resistant, impact resistant, pressure resistant, wear resistant.