×

Phyllite
Phyllite

Pegmatite
Pegmatite



ADD
Compare
X
Phyllite
X
Pegmatite

Phyllite vs Pegmatite

1 Definition
1.1 Definition
Phyllite is a fine-grained metamorphic rock with a well-developed laminar structure, and is intermediate between slate and schist rocks
Pegmatite rock is a holocrystalline, intrusive igneous rock which is composed of interlocking phaneritic crystals
1.2 History
1.2.1 Origin
Unknown
Unknown
1.2.2 Discoverer
Unknown
R. J. Hauy
1.3 Etymology
From Greek phullon leaf + -ite1
From Greek pegma, pegmat which means- thing joined together + -ite
1.4 Class
Metamorphic Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Plutonic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Phyllitic Sheen, Slaty
Pegmatitic
2.2 Color
Black to Grey, Light Greenish Grey
Black, Brown, Cream, Green, Grey, Pink, Red, Rust, Silver, White, Yellow
2.3 Maintenance
More
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Crinkled or Wavy
Layered, Banded, Veined and Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
Decorative Aggregates, Flooring, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
As Building Stone, As Facing Stone, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate, Raw material for the manufacture of mortar, Roadstone
As Dimension Stone, Building houses or walls, Construction Aggregate, for Road Aggregate, Landscaping
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Sculpture
Artifacts, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Commemorative Tablets, Creating Artwork, Writing Slates
Creating Artwork, Jewelry, Source of corundum, tourmalines, beryls and topaz
4 Types
4.1 Types
Not Available
Granite Pegmatite, Gabbro Pegmatite and Diorite Pegmatite
4.2 Features
Easily splits into thin plates, Is one of the oldest rock, Surfaces are often shiny
Generally rough to touch, Is one of the oldest rock, Source of corundum, tourmalines, beryls and topaz
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Not Yet Used
4.3.2 Famous Monuments
Not Applicable
Not Applicable
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Phyllite is a metamorphic rock which is formed by regional metamorphism of argillaceous sediments since their cleavage arose due to deviatoric stress.
Pegmatite rock is holocrystalline, intrusive igneous rock which is formed by partial melting and dewatering during the process of metamorphism.
5.2 Composition
5.2.1 Mineral Content
Albite, Alusite, Amphibole, Apatite, Biotite, Chlorite, Epidote, Feldspar, Garnet, Graphite, Hornblade, Kyanite, Micas, Muscovite or Illite, Porphyroblasts, Quartz, Sillimanite, Staurolite, Talc, Zircon
Apatite, Beryl, Feldspar, Fluorite, Garnet, Lepidolite, Quartz, Silica, Spodumene, Topaz
5.2.2 Compound Content
CaO, Carbon Dioxide, MgO
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, Magnesium Carbonate, MgO, Phosphorus Pentoxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Not Applicable
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
1-27
Coal
1 7
6.1.2 Grain Size
Medium to Fine Coarse Grained
Medium to Coarse Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Highly Porous
Less Porous
6.1.6 Luster
Phyllitic
Grainy, Pearly and Vitreous
6.1.7 Compressive Strength
NA178.54 N/mm2
Obsidian
0.15 450
6.1.8 Cleavage
Crenulation and Pervasive
Perfect
6.1.9 Toughness
1.2
2.1
6.1.10 Specific Gravity
2.72-2.732.6-2.63
Granite
0 8.4
6.1.11 Transparency
Opaque
Translucent to Opaque
6.1.12 Density
2.18-3.3 g/cm32.6-2.65 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
NANA
Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Water Resistant
Heat Resistant, Impact Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Afghanistan, Bangladesh, Bhutan, China, India, Japan, Kazakhstan, Malaysia, Pakistan, Russia, Thailand, Turkey, Vietnam
China, India, Iran, Japan, Nepal, North Korea, Russia, Saudi Arabia, South Korea
7.1.2 Africa
Egypt, Ethiopia, Morocco, Nigeria, South Africa
South Africa
7.1.3 Europe
Austria, England, France, Georgia, Germany, Italy, Liechtenstein, Monaco, Norway, Slovenia, Spain, Sweden, Switzerland
Austria, France, Greece, Ireland, Italy, Netherlands, Slovakia, Spain, Turkey, Ukraine
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Costa Rica, Cuba, Mexico, Panama, USA
Canada
7.2.2 South America
Brazil, Colombia, Guyana
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, Queensland
New South Wales, Queensland, South Australia, Western Australia

Phyllite vs Pegmatite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Phyllite and Pegmatite Reserves. Phyllite is a fine-grained metamorphic rock with a well-developed laminar structure, and is intermediate between slate and schist rocks. Pegmatite rock is a holocrystalline, intrusive igneous rock which is composed of interlocking phaneritic crystals. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Phyllite vs Pegmatite information and Phyllite vs Pegmatite characteristics in the upcoming sections.

Phyllite vs Pegmatite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Phyllite vs Pegmatite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Phyllite and Properties of Pegmatite. Learn more about Phyllite vs Pegmatite in the next section. The interior uses of Phyllite include Decorative aggregates, Floor tiles, Homes and Interior decoration whereas the interior uses of Pegmatite include Decorative aggregates, Flooring and Interior decoration. Due to some exceptional properties of Phyllite and Pegmatite, they have various applications in construction industry. The uses of Phyllite in construction industry include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate, Raw material for the manufacture of mortar, Roadstone and that of Pegmatite include As dimension stone, Building houses or walls, Construction aggregate, For road aggregate, Landscaping.

More about Phyllite and Pegmatite

Here you can know more about Phyllite and Pegmatite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Phyllite and Pegmatite consists of mineral content and compound content. The mineral content of Phyllite includes Albite, Alusite, Amphibole, Apatite, Biotite, Chlorite, Epidote, Feldspar, Garnet, Graphite, Hornblade, Kyanite, Micas, Muscovite or Illite, Porphyroblasts, Quartz, Sillimanite, Staurolite, Talc, Zircon and mineral content of Pegmatite includes Apatite, Beryl, Feldspar, Fluorite, Garnet, Lepidolite, Quartz, Silica, Spodumene, Topaz. You can also check out the list of all Metamorphic Rocks. When we have to compare Phyllite vs Pegmatite, the texture, color and appearance plays an important role in determining the type of rock. Phyllite is available in black to grey, light greenish grey colors whereas, Pegmatite is available in black, brown, cream, green, grey, pink, red, rust, silver, white, yellow colors. Appearance of Phyllite is Crinkled or Wavy and that of Pegmatite is Layered, Banded, Veined and Shiny. Properties of rock is another aspect for Phyllite vs Pegmatite. The hardness of Phyllite is 1-2 and that of Pegmatite is 7. The types of Phyllite are Not Available whereas types of Pegmatite are Granite Pegmatite, Gabbro Pegmatite and Diorite Pegmatite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Phyllite and Pegmatite is white. The specific heat capacity of Phyllite is Not Available and that of Pegmatite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Phyllite is heat resistant, pressure resistant, water resistant whereas Pegmatite is heat resistant, impact resistant, pressure resistant.