Home
×

Phyllite
Phyllite

Dacite
Dacite



ADD
Compare
X
Phyllite
X
Dacite

Phyllite vs Dacite

Add ⊕
1 Definition
1.1 Definition
Phyllite is a fine-grained metamorphic rock with a well-developed laminar structure, and is intermediate between slate and schist rocks
Dacite is a volcanic igneous rock which is rintermediate in composition between andesite and rhyolite
1.2 History
1.2.1 Origin
Unknown
Romania and Moldova, Europe
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From Greek phullon leaf + -ite1
From Dacia, a province of the Roman Empire which lay between the Danube River and Carpathian Mountains where the rock was first described
1.4 Class
Metamorphic Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Phyllitic Sheen, Slaty
Aphanitic to Porphyritic
2.2 Color
Black to Grey, Light Greenish Grey
Bluish - Grey, Brown, Grey, Light to Dark Grey
2.3 Maintenance
More
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Metamorphic Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
65% Metamorphic Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
42% Metamorphic Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
19% Metamorphic Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
15% Metamorphic Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Crinkled or Wavy
Vesicular
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
Decorative Aggregates, Entryways, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
As Building Stone, Paving Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate, Raw material for the manufacture of mortar, Roadstone
As Dimension Stone, Construction Aggregate, for Road Aggregate, Landscaping
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Sculpture
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Commemorative Tablets, Creating Artwork, Writing Slates
Commemorative Tablets, Creating Artwork
4 Types
4.1 Types
Not Available
Footwall Dacite, Hanging wall Dacite, Tuff and Biotite Dacite
4.2 Features
Easily splits into thin plates, Is one of the oldest rock, Surfaces are often shiny
Host Rock for Lead, Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Not Yet Used
4.3.2 Famous Monuments
Not Applicable
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Phyllite is a metamorphic rock which is formed by regional metamorphism of argillaceous sediments since their cleavage arose due to deviatoric stress.
Dacitic magma is formed by the subduction of young oceanic crust under a thick felsic continental plate. Further, the Oceanic crust is hydrothermally altered as quartz and sodium are added.
5.2 Composition
5.2.1 Mineral Content
Albite, Alusite, Amphibole, Apatite, Biotite, Chlorite, Epidote, Feldspar, Garnet, Graphite, Hornblade, Kyanite, Micas, Muscovite or Illite, Porphyroblasts, Quartz, Sillimanite, Staurolite, Talc, Zircon
Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Magnetite, Plagioclase, Pyroxene, Quartz, Zircon
5.2.2 Compound Content
CaO, Carbon Dioxide, MgO
Ca, Fe, Potassium Oxide, Mg, Potassium, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
50% Metamorphic Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Not Applicable
Burial Metamorphism, Cataclastic Metamorphism
5.3.3 Weathering
65% Metamorphic Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
77% Metamorphic Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Water Erosion, Wind Erosion
Chemical Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
1-2
2-2.25
6.1.2 Grain Size
Medium to Fine Coarse Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Highly Porous
Less Porous
6.1.6 Luster
Phyllitic
Subvitreous to Dull
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Crenulation and Pervasive
Perfect
6.1.9 Toughness
1.2
Not Available
6.1.10 Specific Gravity
2.72-2.73
2.86-2.87
6.1.11 Transparency
Opaque
Translucent
6.1.12 Density
2.18-3.3 g/cm3
2.77-2.771 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Water Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Afghanistan, Bangladesh, Bhutan, China, India, Japan, Kazakhstan, Malaysia, Pakistan, Russia, Thailand, Turkey, Vietnam
Not Yet Found
7.1.2 Africa
Egypt, Ethiopia, Morocco, Nigeria, South Africa
Not Yet Found
7.1.3 Europe
Austria, England, France, Georgia, Germany, Italy, Liechtenstein, Monaco, Norway, Slovenia, Spain, Sweden, Switzerland
France, Greece, Romania, Scotland, Spain
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Costa Rica, Cuba, Mexico, Panama, USA
USA
7.2.2 South America
Brazil, Colombia, Guyana
Argentina, Bolivia, Chile, Colombia, Ecuador, Peru, Venezuela
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, Queensland
New Zealand, South Australia, Western Australia

Phyllite vs Dacite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Phyllite and Dacite Reserves. Phyllite is a fine-grained metamorphic rock with a well-developed laminar structure, and is intermediate between slate and schist rocks. Dacite is a volcanic igneous rock which is rintermediate in composition between andesite and rhyolite. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Phyllite vs Dacite information and Phyllite vs Dacite characteristics in the upcoming sections.

Phyllite vs Dacite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Phyllite vs Dacite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Phyllite and Properties of Dacite. Learn more about Phyllite vs Dacite in the next section. The interior uses of Phyllite include Decorative aggregates, Floor tiles, Homes and Interior decoration whereas the interior uses of Dacite include Decorative aggregates, Entryways and Interior decoration. Due to some exceptional properties of Phyllite and Dacite, they have various applications in construction industry. The uses of Phyllite in construction industry include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate, Raw material for the manufacture of mortar, Roadstone and that of Dacite include As dimension stone, Construction aggregate, For road aggregate, Landscaping.

More about Phyllite and Dacite

Here you can know more about Phyllite and Dacite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Phyllite and Dacite consists of mineral content and compound content. The mineral content of Phyllite includes Albite, Alusite, Amphibole, Apatite, Biotite, Chlorite, Epidote, Feldspar, Garnet, Graphite, Hornblade, Kyanite, Micas, Muscovite or Illite, Porphyroblasts, Quartz, Sillimanite, Staurolite, Talc, Zircon and mineral content of Dacite includes Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Magnetite, Plagioclase, Pyroxene, Quartz, Zircon. You can also check out the list of all Metamorphic Rocks. When we have to compare Phyllite vs Dacite, the texture, color and appearance plays an important role in determining the type of rock. Phyllite is available in black to grey, light greenish grey colors whereas, Dacite is available in bluish - grey, brown, grey, light to dark grey colors. Appearance of Phyllite is Crinkled or Wavy and that of Dacite is Vesicular. Properties of rock is another aspect for Phyllite vs Dacite. The hardness of Phyllite is 1-2 and that of Dacite is 2-2.25. The types of Phyllite are Not Available whereas types of Dacite are Footwall Dacite, Hanging wall Dacite, Tuff and Biotite Dacite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Phyllite and Dacite is white. The specific heat capacity of Phyllite is Not Available and that of Dacite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Phyllite is heat resistant, pressure resistant, water resistant whereas Dacite is heat resistant, impact resistant, pressure resistant, wear resistant.

Let Others Know
×