Home
Compare Rocks


Peridotite vs Borolanite


Borolanite vs Peridotite


Definition

Definition
Peridotite is a dense, coarse-grained plutonic is the main constituent of the earth's mantle   
Borolanite is a variety of Nepheline Syenite and belongs to igneous rocks and contains nepheline-alkali feldspar pseudomorphs which occur as conspicuous white spots in the dark rock matrix   

History
  
  

Origin
Pike County, U.S   
Scotland   

Discoverer
Unknown   
Unknown   

Etymology
From French, from peridot +‎ -ite   
From Alkalic Igneous complex near Loch Borralan in northwest Scotland   

Class
Igneous Rocks   
Igneous Rocks   

Sub-Class
Durable Rock, Medium Hardness Rock   
Durable Rock, Medium Hardness Rock   

Family
  
  

Group
Plutonic   
Plutonic   

Other Categories
Coarse Grained Rock, Opaque Rock   
Fine Grained Rock, Opaque Rock   

Texture

Texture
Phaneritic   
Granular   

Color
Dark Greenish - Grey   
Brown, Buff, Cream, Green, Grey, Pink, White   

Maintenance
Less   
Less   

Durability
Durable   
Durable   

Water Resistant
Yes   
Yes   

Scratch Resistant
Yes   
No   

Stain Resistant
No   
No   

Wind Resistant
No   
Yes   

Acid Resistant
No   
Yes   

Appearance
Rough and Shiny   
Banded and Foilated   

Uses

Architecture
  
  

Interior Uses
Decorative Aggregates, Interior Decoration   
Countertops, Decorative Aggregates, Flooring, Homes, Interior Decoration   

Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration   
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings   

Other Architectural Uses
Curbing   
Curbing   

Industry
  
  

Construction Industry
As Dimension Stone, Cobblestones   
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics   

Medical Industry
Not Yet Used   
Not Yet Used   

Antiquity Uses
Monuments, Sculpture, Small Figurines   
Artifacts   

Other Uses
  
  

Commercial Uses
Creating Artwork, Gemstone, Jewelry, Source of Chromite, Platinum, Nickel and Garnet, Source of Diamonds   
Cemetery Markers   

Types

Types
Dunite, Wehrlite, Harzburgite, Lherzolite and Pyrolite   
Not Available   

Features
Constitutes upper part of the Earth's mantle, Generally rough to touch, Host rock for Diamond, Is one of the oldest rock   
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock   

Archaeological Significance
  
  

Monuments
Used   
Used   

Famous Monuments
Data Not Available   
Data Not Available   

Sculpture
Used   
Used   

Famous Sculptures
Data Not Available   
Data Not Available   

Pictographs
Used   
Used   

Petroglyphs
Used   
Used   

Figurines
Used   
Used   

Fossils
Absent   
Absent   

Formation

Formation
Peridotites can be formed in two ways: as mantle rocks formed during the accretion and differentiation of the Earth or as cumulate rocks formed by precipitation of olivine and pyroxenes from basaltic magmas.   
Borolanites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.   

Composition
  
  

Mineral Content
Amphibole, Chromite, Garnet, Magnesium, Olivine, Phlogopite, Plagioclase, Pyroxene   
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite   

Compound Content
Ca, Fe, Mg, Potassium, Silicon Dioxide, Sodium, Titanium Dioxide   
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide   

Transformation
  
  

Metamorphism
Yes   
Yes   

Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism   
Regional Metamorphism   

Weathering
Yes   
Yes   

Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering   
Chemical Weathering, Mechanical Weathering   

Erosion
Yes   
Yes   

Types of Erosion
Chemical Erosion   
Wind Erosion   

Properties

Physical Properties
  
  

Hardness
5.5-6   
5.5-6   

Grain Size
Coarse Grained   
Fine Grained   

Fracture
Irregular   
Conchoidal to Uneven   

Streak
White   
White   

Porosity
Less Porous   
Less Porous   

Luster
Shiny   
Greasy to Dull   

Compressive Strength
107.55 N/mm2   
19
150.00 N/mm2   
14

Cleavage
Imperfect   
Poor   

Toughness
2.1   
Not Available   

Specific Gravity
3-3.01   
2.6   

Transparency
Translucent to Opaque   
Translucent to Opaque   

Density
3.1-3.4 g/cm3   
2.6 g/cm3   

Thermal Properties
  
  

Specific Heat Capacity
1.26 kJ/Kg K   
5
Not Available   

Resistance
Heat Resistant, Pressure Resistant, Wear Resistant   
Heat Resistant, Impact Resistant, Wear Resistant   

Reserves

Deposits in Eastern Continents
  
  

Asia
China, India, Indonesia, Kazakhstan, Russia, South Korea, Thailand, Turkey   
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam   

Africa
Morocco, South Africa   
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa   

Europe
Finland, France, Georgia, Germany, Great Britain, Italy, Kazakhstan, Netherlands, Norway, Spain, Switzerland, Venezuela   
Andorra, Finland, France, Great Britain, Italy, Norway, Portugal, Spain, Sweden   

Others
Not Yet Found   
Greenland   

Deposits in Western Continents
  
  

North America
Canada, USA   
Canada, USA   

South America
Brazil   
Brazil, Chile, Colombia, Uruguay, Venezuela   

Deposits in Oceania Continent
  
  

Australia
New Zealand, Western Australia   
New Zealand, Queensland, South Australia, Tasmania, Western Australia   

Definition >>
<< All

Peridotite vs Borolanite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Peridotite and Borolanite Reserves. Peridotite is a dense, coarse-grained plutonic is the main constituent of the earth's mantle. Borolanite is a variety of Nepheline Syenite and belongs to igneous rocks and contains nepheline-alkali feldspar pseudomorphs which occur as conspicuous white spots in the dark rock matrix. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Peridotite vs Borolanite information and Peridotite vs Borolanite characteristics in the upcoming sections.

Compare Igneous Rocks

Peridotite vs Borolanite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Peridotite vs Borolanite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Peridotite and Properties of Borolanite. Learn more about Peridotite vs Borolanite in the next section. The interior uses of Peridotite include Decorative aggregates and Interior decoration whereas the interior uses of Borolanite include Countertops, Decorative aggregates, Flooring, Homes and Interior decoration. Due to some exceptional properties of Peridotite and Borolanite, they have various applications in construction industry. The uses of Peridotite in construction industry include As dimension stone, Cobblestones and that of Borolanite include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics.

More about Peridotite and Borolanite

Here you can know more about Peridotite and Borolanite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Peridotite and Borolanite consists of mineral content and compound content. The mineral content of Peridotite includes Amphibole, Chromite, Garnet, Magnesium, Olivine, Phlogopite, Plagioclase, Pyroxene and mineral content of Borolanite includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite. You can also check out the list of all Igneous Rocks. When we have to compare Peridotite vs Borolanite, the texture, color and appearance plays an important role in determining the type of rock. Peridotite is available in dark greenish - grey colors whereas, Borolanite is available in brown, buff, cream, green, grey, pink, white colors. Appearance of Peridotite is Rough and Shiny and that of Borolanite is Banded and Foilated. Properties of rock is another aspect for Peridotite vs Borolanite. Hardness of Peridotite and Borolanite is 5.5-6. The types of Peridotite are Dunite, Wehrlite, Harzburgite, Lherzolite and Pyrolite whereas types of Borolanite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Peridotite and Borolanite is white. The specific heat capacity of Peridotite is 1.26 kJ/Kg K and that of Borolanite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Peridotite is heat resistant, pressure resistant, wear resistant whereas Borolanite is heat resistant, impact resistant, wear resistant.

Igneous Rocks

Igneous Rocks

» More Igneous Rocks

Compare Igneous Rocks

» More Compare Igneous Rocks