×

Peridotite
Peridotite

Rhyodacite
Rhyodacite



ADD
Compare
X
Peridotite
X
Rhyodacite

Peridotite and Rhyodacite

1 Definition
1.1 Definition
Peridotite is a dense, coarse-grained plutonic is the main constituent of the earth's mantle
Rhyodacite is an extrusive volcanic rock intermediate in composition between dacite and rhyolite
1.2 History
1.2.1 Origin
Pike County, U.S
USA
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From French, from peridot +‎ -ite
Rhyo lite + dacite : a rock intermediate between rhyolite and dacite that is the extrusive equivalent of granodiorite
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Plutonic
Volcanic
1.6 Other Categories
Coarse Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Phaneritic
Earthy
2.2 Color
Dark Greenish - Grey
Black to Grey, Dark Greenish - Grey
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Rough and Shiny
Skeletal
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Decorative Aggregates, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
As Building Stone, Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cobblestones
As Dimension Stone, Construction Aggregate, for Road Aggregate, Landscaping
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Monuments, Sculpture, Small Figurines
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Gemstone, Jewelry, Source of Chromite, Platinum, Nickel and Garnet, Source of Diamonds
Cemetery Markers, Creating Artwork
4 Types
4.1 Types
Dunite, Wehrlite, Harzburgite, Lherzolite and Pyrolite
Not Available
4.2 Features
Constitutes upper part of the Earth's mantle, Generally rough to touch, Host rock for Diamond, Is one of the oldest rock
Available in Lots of Colors and Patterns
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Peridotites can be formed in two ways: as mantle rocks formed during the accretion and differentiation of the Earth or as cumulate rocks formed by precipitation of olivine and pyroxenes from basaltic magmas.
Rhyodacite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Chromite, Garnet, Magnesium, Olivine, Phlogopite, Plagioclase, Pyroxene
Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Magnetite, Plagioclase, Pyroxene, Quartz, Zircon
5.2.2 Compound Content
Ca, Fe, Mg, Potassium, Silicon Dioxide, Sodium, Titanium Dioxide
Ca, Fe, Potassium Oxide, NA, Potassium, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5.5-65.5-6
Coal
1 7
6.1.2 Grain Size
Coarse Grained
Fine Grained
6.1.3 Fracture
Irregular
Conchoidal
6.1.4 Streak
White
Black
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Shiny
Greasy to Dull
6.1.7 Compressive Strength
107.55 N/mm2200.50 N/mm2
What Is Obsidian
0.15 450
6.1.8 Cleavage
Imperfect
Not Available
6.1.9 Toughness
2.1
2.1
6.1.10 Specific Gravity
3-3.012.34-2.40
Granite
0 8.4
6.1.11 Transparency
Translucent to Opaque
Opaque
6.1.12 Density
3.1-3.4 g/cm3Not Available
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
1.26 kJ/Kg K1.12 kJ/Kg K
What Is Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Indonesia, Kazakhstan, Russia, South Korea, Thailand, Turkey
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
7.1.2 Africa
Morocco, South Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
7.1.3 Europe
Finland, France, Georgia, Germany, Great Britain, Italy, Kazakhstan, Netherlands, Norway, Spain, Switzerland, Venezuela
Austria, Belgium, Finland, France, Germany, Italy, Norway, Sardinia, Spain, Switzerland
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
Canada, USA
7.2.2 South America
Brazil
Not Yet Found
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Western Australia
Not Yet Found

All about Peridotite and Rhyodacite Properties

Know all about Peridotite and Rhyodacite properties here. All properties of rocks are important as they define the type of rock and its application. Peridotite and Rhyodacite belong to Igneous Rocks.Texture of Peridotite is Phaneritic whereas that of Rhyodacite is Earthy. Peridotite appears Rough and Shiny and Rhyodacite appears Skeletal. The luster of Peridotite is shiny while that of Rhyodacite is greasy to dull. Peridotite is available in dark greenish - grey colors whereas Rhyodacite is available in black to grey, dark greenish - grey colors. The commercial uses of Peridotite are creating artwork, gemstone, jewelry, source of chromite, platinum, nickel and garnet, source of diamonds and that of Rhyodacite are cemetery markers, creating artwork.