Home
×

Pantellerite
Pantellerite

Limestone
Limestone



ADD
Compare
X
Pantellerite
X
Limestone

Pantellerite vs Limestone

1 Definition
1.1 Definition
Pantellerite is a peralkaline rhyolite. It has a higher iron and lower aluminium composition than comendite
Limestone is a sedimentary rock composed mostly of calcite and aragonite, which are different crystal forms of calcium carbonate
1.2 History
1.2.1 Origin
Strait of sicily
New Zealand
1.2.2 Discoverer
Unknown
Belsazar Hacquet
1.3 Etymology
From Pantelleria, a volcanic island in the Strait of Sicily
From lime and stone in late 14th Century
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Eutaxitic
Clastic or Non-Clastic
2.2 Color
Dark Greenish - Grey
Beige, Black, Blue, Brown, Cream, Gold, Green, Grey, Light Green, Light Grey, Linen, Pink, Red, Rust, Silver, White, Yellow
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Layered and Foliated
Rough and Banded
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Not Yet Used
Decorative Aggregates, Interior Decoration
3.1.2 Exterior Uses
Not Yet Used
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Not Yet Used
Curbing
3.2 Industry
3.2.1 Construction Industry
NA
Cement Manufacture, Cobblestones, for Road Aggregate, Production of Glass and Ceramics, Raw material for the manufacture of mortar, Roadstone, Source of calcium
3.2.2 Medical Industry
Not Yet Used
In Chemical and Pharmaceutical Industry, Medicines and Cosmetics
3.3 Antiquity Uses
Artifacts, Sculpture
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork
Animal feed filler, As a Feed Additive for Livestock, Paper Industry, Raw material for manufacture of quicklime, slaked lime, Soil Conditioner, Used in aquariums, Whiting material in toothpaste, paint and paper
4 Types
4.1 Types
Pantelleritic Ignimbrite
Chalk, Coquina, Fossiliferous Limestone, Lithographic Limestone, Oolitic Limestone, Travertine, Tufa
4.2 Features
High Fe content
Host Rock for Lead, Stalactites and stalagmites are formed from this rock, Zinc and Copper Deposits
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Acropolis of Athens in Greece, Agia Sophia in Istanbul, Turkey, Al Aqsa Mosque in Jerusalem, Angkor Wat in Cambodia, Big Ben in London, Charminar in Hyderabad, India, Chhatrapati Shivaji Terminus in Maharashtra, India, Chichen Itza in Mexico, Empire State Building in New York, Khajuraho Temples, India, Kremlin in Moscow, Louvre in Paris, France, Neuschwanstein in Bavaria, Potala Palace in Lahasa, Tibet, Wailing Wall in Jerusalem
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Ajanta Caves in Maharashtra, India, Elephanta Caves in Maharashtra, India
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Pantellerite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Limestone is a sedimentary rock which is mainly made up of calcium carbonate.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Feldspar, Ilmenite
Calcite, Chert, Clay, Dolomite, Quartz, Sand, Silt
5.2.2 Compound Content
Al, Fe
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, MgO
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism
Not Applicable
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6-7
3-4
6.1.2 Grain Size
Fine Grained
Fine Grained
6.1.3 Fracture
Sub-conchoidal
Splintery
6.1.4 Streak
Unknown
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Earthy
Dull to Pearly
6.1.7 Compressive Strength
Flint
Not Available
Rank: N/A (Overall)
115.00 N/mm2
Rank: 18 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Conchoidal
Non-Existent
6.1.9 Toughness
2
1
6.1.10 Specific Gravity
Not Available
2.3-2.7
6.1.11 Transparency
Translucent to Opaque
Opaque
6.1.12 Density
Not Available
2.3-2.7 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
Not Available
Rank: N/A (Overall)
0.91 kJ/Kg K
Rank: 11 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant
Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India
Brunei, India, Indonesia, Malaysia, Singapore, Thailand, Vietnam
7.1.2 Africa
Angola, Egypt, Madagascar, Namibia, Nigeria
Cameroon, Chad, Ghana, Kenya, Malawi, Sudan, Tanzania, Togo, Zambia, Zimbabwe
7.1.3 Europe
Germany, Iceland, Ireland, Italy, Spain, United Kingdom
United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, USA
USA
7.2.2 South America
Argentina, Bolivia, Brazil, Colombia, Ecuador
Colombia
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, Queensland, Western Australia
Adelaide, New Zealand, Queensland, Tonga, Victoria, Yorke Peninsula

Pantellerite vs Limestone Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Pantellerite and Limestone Reserves. Pantellerite is a peralkaline rhyolite. It has a higher iron and lower aluminium composition than comendite. Limestone is a sedimentary rock composed mostly of calcite and aragonite, which are different crystal forms of calcium carbonate. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Pantellerite vs Limestone information and Pantellerite vs Limestone characteristics in the upcoming sections.

Pantellerite vs Limestone Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Pantellerite vs Limestone characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Pantellerite and Properties of Limestone. Learn more about Pantellerite vs Limestone in the next section. The interior uses of Pantellerite include Not yet used whereas the interior uses of Limestone include Decorative aggregates and Interior decoration. Due to some exceptional properties of Pantellerite and Limestone, they have various applications in construction industry. The uses of Pantellerite in construction industry include Na and that of Limestone include Cement manufacture, Cobblestones, For road aggregate, Production of glass and ceramics, Raw material for the manufacture of mortar, Roadstone, Source of calcium.

More about Pantellerite and Limestone

Here you can know more about Pantellerite and Limestone. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Pantellerite and Limestone consists of mineral content and compound content. The mineral content of Pantellerite includes Amphibole, Feldspar, Ilmenite and mineral content of Limestone includes Calcite, Chert, Clay, Dolomite, Quartz, Sand, Silt. You can also check out the list of all Igneous Rocks. When we have to compare Pantellerite vs Limestone, the texture, color and appearance plays an important role in determining the type of rock. Pantellerite is available in dark greenish - grey colors whereas, Limestone is available in beige, black, blue, brown, cream, gold, green, grey, light green, light grey, linen, pink, red, rust, silver, white, yellow colors. Appearance of Pantellerite is Layered and Foliated and that of Limestone is Rough and Banded. Properties of rock is another aspect for Pantellerite vs Limestone. The hardness of Pantellerite is 6-7 and that of Limestone is 3-4. The types of Pantellerite are Pantelleritic Ignimbrite whereas types of Limestone are Chalk, Coquina, Fossiliferous Limestone, Lithographic Limestone, Oolitic Limestone, Travertine, Tufa. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Pantellerite is unknown while that of Limestone is white. The specific heat capacity of Pantellerite is Not Available and that of Limestone is 0.91 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Pantellerite is heat resistant whereas Limestone is pressure resistant.

Let Others Know
×