×

Obsidian
Obsidian

Latite
Latite



ADD
Compare
X
Obsidian
X
Latite

Obsidian and Latite

Add ⊕
1 Definition
1.1 Definition
Obsidian is a naturally occurring volcanic glass formed as an extrusive igneous rock. It is produced when felsic lava extruded from a volcano cools rapidly with minimum crystal growth
Latite is an igneous, volcanic rock, with aphanitic-aphyric to aphyric-porphyritic texture
1.2 History
1.2.1 Origin
Ethiopia
Italy
1.2.2 Discoverer
Obsius
Unknown
1.3 Etymology
From Latin obsidianus, misprint of Obsianus (lapis) (stone) of Obsius
From the Latin word latium
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Volcanic
1.6 Other Categories
Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Glassy
Aphanitic to Porphyritic
2.2 Color
Black, Blue, Brown, Green, Orange, Red, Tan, Yellow
Black, Brown, Colourless, Green, Grey, Pink, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Shiny
Rough
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Decorative Aggregates, Entryways, Interior Decoration
3.1.2 Exterior Uses
Garden Decoration
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Not Yet Used
Curbing
3.2 Industry
3.2.1 Construction Industry
Arrowheads, Cutting Tool, Knives, Scrapers, Spear Points
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Surgery
Not Yet Used
3.3 Antiquity Uses
Artifacts, Jewellery
Artifacts, Monuments, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Mirror, Used in aquariums
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Metallurgical Flux, Soil Conditioner, Source of Magnesia (MgO)
4 Types
4.1 Types
Fireworks Obsidian, Mahogany, Sheen Obsidian, Snowflake obsidian and Velvet Peacock Obsidian
Rhomb porphyries
4.2 Features
Blocks negativity, Helps to protect against depression
Host Rock for Lead
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
When the lava is released from volcano, it undergoes a very rapid cooling which freezes the mechanisms of crystallization. The result is a volcanic glass with a uniform smooth texture.
Latite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
5.2 Composition
5.2.1 Mineral Content
Not Available
Alkali feldspar, Biotite, Plagioclase, Pyroxene
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
CaO, Cl, MgO
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion
Chemical Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5-5.55-5.5
Coal
1 7
6.1.2 Grain Size
Not Applicable
Fine Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Very Less Porous
Very Less Porous
6.1.6 Luster
Vitreous
Subvitreous to Dull
6.1.7 Compressive Strength
0.15 N/mm2310.00 N/mm2
Slate
0.15 450
6.1.8 Cleavage
Non-Existent
Perfect
6.1.9 Toughness
Not Available
2.7
6.1.10 Specific Gravity
2.6-2.72.86
Granite
0 8.4
6.1.11 Transparency
Translucent
Translucent
6.1.12 Density
2.6 g/cm32.8-2.9 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
0.92 kJ/Kg K0.92 kJ/Kg K
What Is Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Impact Resistant
Heat Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Afghanistan, Indonesia, Japan, Russia
Not Yet Found
7.1.2 Africa
Kenya
Not Yet Found
7.1.3 Europe
Greece, Hungary, Iceland, Italy, Turkey
Bulgaria
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Mexico, USA
USA
7.2.2 South America
Argentina, Chile, Ecuador, Peru
Not Yet Found
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand
Not Yet Found

All about Obsidian and Latite Properties

Know all about Obsidian and Latite properties here. All properties of rocks are important as they define the type of rock and its application. Obsidian and Latite belong to Igneous Rocks.Texture of Obsidian is Glassy whereas that of Latite is Aphanitic to Porphyritic. Obsidian appears Shiny and Latite appears Rough. The luster of Obsidian is vitreous while that of Latite is subvitreous to dull. Obsidian is available in black, blue, brown, green, orange, red, tan, yellow colors whereas Latite is available in black, brown, colourless, green, grey, pink, white colors. The commercial uses of Obsidian are creating artwork, mirror, used in aquariums and that of Latite are an oil and gas reservoir, as a feed additive for livestock, metallurgical flux, soil conditioner, source of magnesia (mgo).