Home
Compare Rocks


Nepheline Syenite vs Monzonite


Monzonite vs Nepheline Syenite


Definition

Definition
Nepheline Syenite is a holocrystalline plutonic rock resembling syenite but containing nepheline and lacking quartz   
Monzonite is a granular igneous rock with composition between syenite and diorite and containing approximately equal amounts of orthoclase and plagioclase   

History
  
  

Origin
Unknown   
Trento Province, Italy   

Discoverer
Unknown   
Unknown   

Etymology
From origin of a Palaeozoic nepheline syenite from northern Shanxi Province, China   
From Mount Monzoni in the Tyrol, Italy, + -ite1   

Class
Igneous Rocks   
Igneous Rocks   

Sub-Class
Durable Rock, Medium Hardness Rock   
Durable Rock, Hard Rock   

Family
  
  

Group
Plutonic   
Plutonic   

Other Categories
Fine Grained Rock, Opaque Rock   
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock   

Texture

Texture
Granular   
Phaneritic   

Color
Brown, Buff, Cream, Green, Grey, Pink, White   
Black, Brown, Light to Dark Grey, White   

Maintenance
Less   
Less   

Durability
Durable   
Durable   

Water Resistant
Yes   
Yes   

Scratch Resistant
No   
Yes   

Stain Resistant
Yes   
Yes   

Wind Resistant
Yes   
No   

Acid Resistant
Yes   
Yes   

Appearance
Banded and Foilated   
Shiny   

Uses

Architecture
  
  

Interior Uses
Countertops, Decorative Aggregates, Flooring, Homes, Interior Decoration   
Decorative Aggregates, Flooring, Interior Decoration   

Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone   
As Building Stone, As Facing Stone, Office Buildings, Paving Stone   

Other Architectural Uses
Curbing   
Curbing   

Industry
  
  

Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics   
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate   

Medical Industry
Not Yet Used   
Not Yet Used   

Antiquity Uses
Artifacts, Monuments, Sculpture   
Artifacts, Monuments, Sculpture   

Other Uses
  
  

Commercial Uses
Cemetery Markers, Creating Artwork   
Creating Artwork   

Types

Types
Borolanite and Litchfieldite   
Quartz Monzonite, Mangerite, Syenite and Diorite   

Features
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock   
Available in lots of colors, Is one of the oldest rock   

Archaeological Significance
  
  

Monuments
Used   
Used   

Famous Monuments
Data Not Available   
Data Not Available   

Sculpture
Used   
Used   

Famous Sculptures
Data Not Available   
Data Not Available   

Pictographs
Used   
Not Used   

Petroglyphs
Used   
Not Used   

Figurines
Used   
Used   

Fossils
Absent   
Absent   

Formation

Formation
Nepheline Syenites are formed due to alkaline igneous activities and are generally formed in thick continental crustal areas or in Cordilleran subduction zones.   
Monzonite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.   

Composition
  
  

Mineral Content
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite   
Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon   

Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide   
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide   

Transformation
  
  

Metamorphism
Yes   
Yes   

Types of Metamorphism
Burial Metamorphism, Impact Metamorphism   
Burial Metamorphism, Cataclastic Metamorphism, Impact Metamorphism   

Weathering
Yes   
Yes   

Types of Weathering
Biological Weathering, Chemical Weathering   
Biological Weathering   

Erosion
Yes   
Yes   

Types of Erosion
Chemical Erosion   
Chemical Erosion, Coastal Erosion, Glacier Erosion, Water Erosion   

Properties

Physical Properties
  
  

Hardness
5.5-6   
6-7   

Grain Size
Fine Grained   
Medium to Fine Coarse Grained   

Fracture
Conchoidal to Uneven   
Not Available   

Streak
White   
White   

Porosity
Less Porous   
Less Porous   

Luster
Greasy to Dull   
Subvitreous to Dull   

Compressive Strength
150.00 N/mm2   
14
310.00 N/mm2   
2

Cleavage
Poor   
Not Available   

Toughness
Not Available   
Not Available   

Specific Gravity
2.6   
2.8-3   

Transparency
Translucent to Opaque   
Opaque   

Density
2.6 g/cm3   
2.9-2.91 g/cm3   

Thermal Properties
  
  

Specific Heat Capacity
Not Available   
0.92 kJ/Kg K   
10

Resistance
Heat Resistant, Impact Resistant, Wear Resistant   
Heat Resistant, Impact Resistant, Pressure Resistant   

Reserves

Deposits in Eastern Continents
  
  

Asia
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam   
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam   

Africa
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa   
Angola, Egypt, Ethiopia, Madagascar, Namibia, Nigeria, South Africa   

Europe
Andorra, Finland, France, Great Britain, Italy, Norway, Portugal, Spain, Sweden   
Bulgaria, England, Germany, Norway, Romania, Switzerland   

Others
Greenland   
Not Yet Found   

Deposits in Western Continents
  
  

North America
Canada, USA   
USA   

South America
Brazil, Chile, Colombia, Uruguay, Venezuela   
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru   

Deposits in Oceania Continent
  
  

Australia
New Zealand, Queensland, South Australia, Tasmania, Western Australia   
New South Wales, New Zealand, Queensland, South Australia, Western Australia   

Definition >>
<< All

Nepheline Syenite vs Monzonite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Nepheline Syenite and Monzonite Reserves. Nepheline Syenite is a holocrystalline plutonic rock resembling syenite but containing nepheline and lacking quartz. Monzonite is a granular igneous rock with composition between syenite and diorite and containing approximately equal amounts of orthoclase and plagioclase. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Nepheline Syenite vs Monzonite information and Nepheline Syenite vs Monzonite characteristics in the upcoming sections.

Compare Igneous Rocks

Nepheline Syenite vs Monzonite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Nepheline Syenite vs Monzonite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Nepheline Syenite and Properties of Monzonite. Learn more about Nepheline Syenite vs Monzonite in the next section. The interior uses of Nepheline Syenite include Countertops, Decorative aggregates, Flooring, Homes and Interior decoration whereas the interior uses of Monzonite include Decorative aggregates, Flooring and Interior decoration. Due to some exceptional properties of Nepheline Syenite and Monzonite, they have various applications in construction industry. The uses of Nepheline Syenite in construction industry include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics and that of Monzonite include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate.

More about Nepheline Syenite and Monzonite

Here you can know more about Nepheline Syenite and Monzonite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Nepheline Syenite and Monzonite consists of mineral content and compound content. The mineral content of Nepheline Syenite includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite and mineral content of Monzonite includes Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon. You can also check out the list of all Igneous Rocks. When we have to compare Nepheline Syenite vs Monzonite, the texture, color and appearance plays an important role in determining the type of rock. Nepheline Syenite is available in brown, buff, cream, green, grey, pink, white colors whereas, Monzonite is available in black, brown, light to dark grey, white colors. Appearance of Nepheline Syenite is Banded and Foilated and that of Monzonite is Shiny. Properties of rock is another aspect for Nepheline Syenite vs Monzonite. The hardness of Nepheline Syenite is 5.5-6 and that of Monzonite is 6-7. The types of Nepheline Syenite are Borolanite and Litchfieldite whereas types of Monzonite are Quartz Monzonite, Mangerite, Syenite and Diorite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Nepheline Syenite and Monzonite is white. The specific heat capacity of Nepheline Syenite is Not Available and that of Monzonite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Nepheline Syenite is heat resistant, impact resistant, wear resistant whereas Monzonite is heat resistant, impact resistant, pressure resistant.

Igneous Rocks

Igneous Rocks

» More Igneous Rocks

Compare Igneous Rocks

» More Compare Igneous Rocks