1 Definition
1.1 Definition
Litchfieldite is a rare igneous rock which is coarse-grained, foliated and a variety of nepheline syenite, sometimes also called as nepheline syenite gneiss or gneissic nepeheline syenite
Tuff is a type of rock made of volcanic ash ejected from a vent during a volcanic eruption
1.2 History
1.2.1 Origin
1.2.2 Discoverer
1.3 Etymology
From its occurrence at Litchfield, Maine, USA
From a Latin word tophous then in Italian tufo and finally tuff
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
1.6 Other Categories
Coarse Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Granular
Clastic, Pyroclastic
2.2 Color
Brown, Buff, Cream, Green, Grey, Pink, White
Brown, Grey, Yellow
2.3 Maintenance
2.4 Durability
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Banded and Foilated
Dull, Vesicular and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Flooring, Interior Decoration
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings, Paving Stone
3.1.3 Other Architectural Uses
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics
Building houses or walls, Construction Aggregate
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork
Creating Artwork
4 Types
4.1 Types
Borolanite and Litchfieldite
Welded tuff, Rhyolitic tuff, Basaltic tuff, Trachyte tuff, Andesitic tuff and Ignimbrite.
4.2 Features
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock
Always found as volcanic pipes over deep continental crust
4.3 Archaeological Significance
4.3.1 Monuments
4.3.2 Famous Monuments
Data Not Available
Easter Island in the Polynesian Triangle, Pacific Ocean
4.3.3 Sculpture
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
4.3.6 Petroglyphs
4.3.7 Figurines
4.4 Fossils
5 Formation
5.1 Formation
Litchfieldite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Tuff is formed when large masses of ash and sand which are mixed with hot gases are ejected by a volcano and avalanche rapidly down its slopes.
5.2 Composition
5.2.1 Mineral Content
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite
Calcite, Chlorite
5.2.2 Compound Content
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Hydrogen Sulfide, Sulfur Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Coastal Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6.1.2 Grain Size
Coarse Grained
Fine Grained
6.1.3 Fracture
Conchoidal to Uneven
Uneven
6.1.4 Streak
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Greasy to Dull
Vitreous to Dull
6.1.7 Compressive Strength
150.00 N/mm2243.80 N/mm2
0.15
450
6.1.8 Cleavage
6.1.9 Toughness
Not Available
Not Available
6.1.10 Specific Gravity
6.1.11 Transparency
Translucent to Opaque
Opaque
6.1.12 Density
2.6 g/cm31-1.8 g/cm3
0
1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
6.2.2 Resistance
Heat Resistant, Impact Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
Afghanistan, Armenia, Azerbaijan, Burma, Cambodia, China, India, Indonesia, Iran, Japan, Malaysia, Mongolia, Nepal, North Korea, Pakistan, Saudi Arabia, Syria, Taiwan, Thailand, Turkey, Vietnam, Yemen
7.1.2 Africa
South Africa
Cameroon, Cape Verde, Eritrea, Ethiopia, Kenya, Libya, Madagascar, Nigeria, Rwanda, South Africa, Sudan, Uganda
7.1.3 Europe
Finland, Norway, Portugal
France, Georgia, Germany, Greece, Iceland, Italy, Netherlands, Poland, Portugal, Spain, United Kingdom
7.1.4 Others
Not Yet Found
Antarctica, Hawaii Islands
7.2 Deposits in Western Continents
7.2.1 North America
Canada
Canada, Costa Rica, Panama, USA
7.2.2 South America
Brazil
Argentina, Bolivia, Brazil, Chile, Ecuador, Paraguay
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
Central Australia, Western Australia