×

Limestone
Limestone

Adakite
Adakite



ADD
Compare
X
Limestone
X
Adakite

Limestone vs Adakite

Add ⊕
1 Definition
1.1 Definition
Limestone is a sedimentary rock composed mostly of calcite and aragonite, which are different crystal forms of calcium carbonate
Adakite is an intermediate to felsic volcanic rock that has geochemical characteristics of magma which is said to be formed by partial melting of altered basalt that is subducted below volcanic arcs
1.2 History
1.2.1 Origin
New Zealand
Adak, Aleutian Islands
1.2.2 Discoverer
Belsazar Hacquet
Defant and Drummond
1.3 Etymology
From lime and stone in late 14th Century
From Adak, Aleutian Islands
1.4 Class
Sedimentary Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Clastic or Non-Clastic
Porphyritic
2.2 Color
Beige, Black, Blue, Brown, Cream, Gold, Green, Grey, Light Green, Light Grey, Linen, Pink, Red, Rust, Silver, White, Yellow
Black, Brown, Light to Dark Grey
2.3 Maintenance
More
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Rough and Banded
Dull and Soft
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Decorative Aggregates, Floor Tiles, Homes, Hotels, Kitchens
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Whetstones
3.2 Industry
3.2.1 Construction Industry
Cement Manufacture, Cobblestones, for Road Aggregate, Production of Glass and Ceramics, Raw material for the manufacture of mortar, Roadstone, Source of calcium
As Dimension Stone, Cobblestones, Rail Track Ballast, Roadstone
3.2.2 Medical Industry
In Chemical and Pharmaceutical Industry, Medicines and Cosmetics
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Animal feed filler, As a Feed Additive for Livestock, Paper Industry, Raw material for manufacture of quicklime, slaked lime, Soil Conditioner, Used in aquariums, Whiting material in toothpaste, paint and paper
Commemorative Tablets, Pottery, Used in aquariums
4 Types
4.1 Types
Chalk, Coquina, Fossiliferous Limestone, Lithographic Limestone, Oolitic Limestone, Travertine, Tufa
Not Available
4.2 Features
Host Rock for Lead, Stalactites and stalagmites are formed from this rock, Zinc and Copper Deposits
Has High structural resistance against erosion and climate, Host rock for Diamond, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Acropolis of Athens in Greece, Agia Sophia in Istanbul, Turkey, Al Aqsa Mosque in Jerusalem, Angkor Wat in Cambodia, Big Ben in London, Charminar in Hyderabad, India, Chhatrapati Shivaji Terminus in Maharashtra, India, Chichen Itza in Mexico, Empire State Building in New York, Khajuraho Temples, India, Kremlin in Moscow, Louvre in Paris, France, Neuschwanstein in Bavaria, Potala Palace in Lahasa, Tibet, Wailing Wall in Jerusalem
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Ajanta Caves in Maharashtra, India, Elephanta Caves in Maharashtra, India
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Present
Absent
5 Formation
5.1 Formation
Limestone is a sedimentary rock which is mainly made up of calcium carbonate.
Adakite rocks are formed when the hydrous fluids are released from minerals that break down in metamorphosed basalt, and rise into the mantle they initiate partial melting.
5.2 Composition
5.2.1 Mineral Content
Calcite, Chert, Clay, Dolomite, Quartz, Sand, Silt
Olivine, Plagioclase, Pyroxene
5.2.2 Compound Content
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, MgO
Aluminium Oxide, MgO, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Not Applicable
Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion
Coastal Erosion, Sea Erosion, Water Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3-43-4
Coal
1 7
6.1.2 Grain Size
Fine Grained
Fine to Medium Grained
6.1.3 Fracture
Splintery
Conchoidal
6.1.4 Streak
White
Bluish Black
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Dull to Pearly
Grainy, Pearly and Vitreous
6.1.7 Compressive Strength
115.00 N/mm2NA
Obsidian
0.15 450
6.1.8 Cleavage
Non-Existent
Not Available
6.1.9 Toughness
1
Not Available
6.1.10 Specific Gravity
2.3-2.7Not Available
Granite
0 8.4
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.3-2.7 g/cm3Not Available
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
0.91 kJ/Kg KNA
Granulite
0.14 3.2
6.2.2 Resistance
Pressure Resistant
Heat Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Brunei, India, Indonesia, Malaysia, Singapore, Thailand, Vietnam
India, Russia
7.1.2 Africa
Cameroon, Chad, Ghana, Kenya, Malawi, Sudan, Tanzania, Togo, Zambia, Zimbabwe
Ethiopia, Somalia, South Africa
7.1.3 Europe
United Kingdom
Iceland
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, USA
7.2.2 South America
Colombia
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
Adelaide, New Zealand, Queensland, Tonga, Victoria, Yorke Peninsula
Not Yet Found

Limestone vs Adakite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Limestone and Adakite Reserves. Limestone is a sedimentary rock composed mostly of calcite and aragonite, which are different crystal forms of calcium carbonate. Adakite is an intermediate to felsic volcanic rock that has geochemical characteristics of magma which is said to be formed by partial melting of altered basalt that is subducted below volcanic arcs. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Limestone vs Adakite information and Limestone vs Adakite characteristics in the upcoming sections.

Limestone vs Adakite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Limestone vs Adakite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Limestone and Properties of Adakite. Learn more about Limestone vs Adakite in the next section. The interior uses of Limestone include Decorative aggregates and Interior decoration whereas the interior uses of Adakite include Decorative aggregates, Floor tiles, Homes, Hotels and Kitchens. Due to some exceptional properties of Limestone and Adakite, they have various applications in construction industry. The uses of Limestone in construction industry include Cement manufacture, Cobblestones, For road aggregate, Production of glass and ceramics, Raw material for the manufacture of mortar, Roadstone, Source of calcium and that of Adakite include As dimension stone, Cobblestones, Rail track ballast, Roadstone.

More about Limestone and Adakite

Here you can know more about Limestone and Adakite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Limestone and Adakite consists of mineral content and compound content. The mineral content of Limestone includes Calcite, Chert, Clay, Dolomite, Quartz, Sand, Silt and mineral content of Adakite includes Olivine, Plagioclase, Pyroxene. You can also check out the list of all Sedimentary Rocks. When we have to compare Limestone vs Adakite, the texture, color and appearance plays an important role in determining the type of rock. Limestone is available in beige, black, blue, brown, cream, gold, green, grey, light green, light grey, linen, pink, red, rust, silver, white, yellow colors whereas, Adakite is available in black, brown, light to dark grey colors. Appearance of Limestone is Rough and Banded and that of Adakite is Dull and Soft. Properties of rock is another aspect for Limestone vs Adakite. Hardness of Limestone and Adakite is 3-4. The types of Limestone are Chalk, Coquina, Fossiliferous Limestone, Lithographic Limestone, Oolitic Limestone, Travertine, Tufa whereas types of Adakite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Limestone is white while that of Adakite is bluish black. The specific heat capacity of Limestone is 0.91 kJ/Kg K and that of Adakite is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Limestone is pressure resistant whereas Adakite is heat resistant, pressure resistant, wear resistant.