×

Lignite
Lignite

Tephrite
Tephrite



ADD
Compare
X
Lignite
X
Tephrite

Lignite and Tephrite

Add ⊕
1 Definition
1.1 Definition
Lignite is a soft brownish coal which shows traces of plants and is intermediate between bituminous coal and peat
Tephrite is an aphanitic to porphyritic textured, volcanic igneous rock
1.2 History
1.2.1 Origin
France
Germany
1.2.2 Discoverer
Unknown
Van Tooren
1.3 Etymology
From French, Latin lignum wood + -ite1
From Greek tephra, ashes from Indo-European base, to burn
1.4 Class
Sedimentary Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Soft Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Amorphous, Glassy
Aphanitic to Porphyritic
2.2 Color
Black, Brown, Dark Brown, Grey, Light to Dark Grey
Black, Brown, Colourless, Green, Grey, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Veined or Pebbled
Vesicular
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Not Yet Used
Decorative Aggregates, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
Not Yet Used
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Not Yet Used
Curbing
3.2 Industry
3.2.1 Construction Industry
for Road Aggregate, Steel Production
Landscaping
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Not Yet Used
Artifacts, Sculpture
3.4 Other Uses
3.4.1 Commercial Uses
Electricity Generation
Production of Lime, Soil Conditioner
4 Types
4.1 Types
Xyloid Lignite or Fossil Wood and Compact Lignite or Perfect Lignite
Not Available
4.2 Features
Generally rough to touch, Helps in production of Heat and Electricity, Used as fossil fuel
Host Rock for Lead
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Not Yet Used
4.3.2 Famous Monuments
Not Applicable
Not Applicable
4.3.3 Sculpture
Not Yet Used
Used
4.3.4 Famous Sculptures
Not Applicable
Data Not Available
4.3.5 Pictographs
Used
Not Used
4.3.6 Petroglyphs
Used
Not Used
4.3.7 Figurines
Not Yet Used
Used
4.4 Fossils
Present
Absent
5 Formation
5.1 Formation
Coal formation takes place due to accumulation of plant debris in a swamp environment. The Coal formation process continues, as peat turns into lignite brown or black coal at increasing heat and pressure.
Tephrite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
5.2 Composition
5.2.1 Mineral Content
Not Available
Alkali feldspar, Nepheline, Plagioclase, Pyroxene
5.2.2 Compound Content
Carbon, Hydrogen, Nitrogen, Oxygen, Sulphur
CaO, Carbon Dioxide, MgO, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Not Applicable
Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
16.5
Coal
1 7
6.1.2 Grain Size
Medium to Fine Coarse Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal
Uneven
6.1.4 Streak
Black
Bluish Black
6.1.5 Porosity
Highly Porous
Very Less Porous
6.1.6 Luster
Dull to Vitreous to Submetallic
Subvitreous to Dull
6.1.7 Compressive Strength
NA90.00 N/mm2
What Is Obsidian
0.15 450
6.1.8 Cleavage
Non-Existent
Crenulation and Pervasive
6.1.9 Toughness
Not Available
2.4
6.1.10 Specific Gravity
1.1-1.42.86
Granite
0 8.4
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
800-801 g/cm32.8-2.9 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
1.26 kJ/Kg K0.92 kJ/Kg K
What Is Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant
Heat Resistant, Impact Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Bangladesh, Burma, Cambodia, China, India, Indonesia, Kazakhstan, Malaysia, Mongolia, Pakistan, Turkey, Vietnam
Not Yet Found
7.1.2 Africa
Botswana, Kenya, Morocco, Mozambique, South Africa, Tanzania
Namibia, Uganda
7.1.3 Europe
Belgium, Bulgaria, England, France, Germany, Greece, Hungary, Kosovo, Netherlands, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, The Czech Republic, Ukraine, United Kingdom
Germany, Hungary, Italy, Portugal, Spain
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Mexico, USA
USA
7.2.2 South America
Brazil, Chile, Colombia, Venezuela
Not Yet Found
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, Queensland, Victoria
New Zealand, Western Australia

All about Lignite and Tephrite Properties

Know all about Lignite and Tephrite properties here. All properties of rocks are important as they define the type of rock and its application. Lignite belongs to Sedimentary Rocks while Tephrite belongs to Igneous Rocks.Texture of Lignite is Amorphous, Glassy whereas that of Tephrite is Aphanitic to Porphyritic. Lignite appears Veined or Pebbled and Tephrite appears Vesicular. The luster of Lignite is dull to vitreous to submetallic while that of Tephrite is subvitreous to dull. Lignite is available in black, brown, dark brown, grey, light to dark grey colors whereas Tephrite is available in black, brown, colourless, green, grey, white colors. The commercial uses of Lignite are electricity generation and that of Tephrite are production of lime, soil conditioner.