Home
×

Lherzolite
Lherzolite

Ganister
Ganister



ADD
Compare
X
Lherzolite
X
Ganister

Lherzolite vs Ganister

1 Definition
1.1 Definition
Lherzolite is a type of ultramafic igneous rock which contains essential olivine and clinopyroxene and orthopyroxene in equal proportions
A ganister is a hard, fine-grained quartzose sandstone or orthoquartzite which is basically used in the manufacture of silica brick typically used to line furnaces and is a type of sedimentary rocks.
1.2 History
1.2.1 Origin
France
England
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From the Lherz Massif, an alpine peridotite complex, at Étang de Lers, near Massat in the French Pyrenees; Lherz is the archaic spelling of this location
From gan′is-ter i.e a hard, close-grained siliceous stone, often forming the stratum which underlies a coal-seam
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Plutonic
Not Applicable
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Grenue
Clastic, Granular, Rough
2.2 Color
Black, Dark Greenish - Grey, Green, Pink, Purple
Beige, Black, Brown, Colourless, Cream, Dark Brown, Green, Grey, Light Green, Light to Dark Grey, Pink, Red, White, Yellow
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Glassy, Vesicular and Foilated
Rough
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Entryways, Homes, Interior Decoration
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Office Buildings
As Building Stone, Garden Decoration, Office Buildings, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
Landscaping, Manufacture of Magnesium and Dolomite Refractories, Used for flooring, stair treads, borders and window sills.
Cement Manufacture, Construction Aggregate, for Road Aggregate, Production of Glass and Ceramics, Raw material for the manufacture of mortar
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Sculpture
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
As armour rock for sea walls, Source of Magnesia (MgO), Used in aquariums
An Oil and Gas Reservoir, In aquifers, Petroleum reservoirs, Soil Conditioner, Source of Magnesia (MgO), Tombstones
4 Types
4.1 Types
Garnet Lherzolite
Not Available
4.2 Features
Host Rock for Lead
Available in Lots of Colors and Patterns, Generally rough to touch, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Lherzolite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Ganisters are formed by the destruction of easily weathered minerals mainly feldspar, within the surface horizon of soil by soil-forming processes.
5.2 Composition
5.2.1 Mineral Content
Harzburgite, Olivine, Pyroxene, Pyrrhotite
Calcite, Clay, Clay Minerals, Feldspar, Micas, Quartz
5.2.2 Compound Content
CaO, Cr, Chromium(III) Oxide, MgO
Aluminium Oxide, CaO, Iron(III) Oxide, Potassium Oxide, MgO, Sodium Oxide, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Contact Metamorphism
Not Applicable
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Water Erosion, Wind Erosion
Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6.5
6-7
6.1.2 Grain Size
Fine Grained
Coarse or Fine
6.1.3 Fracture
Conchoidal
Splintery
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Highly Porous
6.1.6 Luster
Subvitreous to Dull
Dull
6.1.7 Compressive Strength
Flint
290.00 N/mm2
Rank: 3 (Overall)
95.00 N/mm2
Rank: 20 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Perfect
6.1.9 Toughness
2.7
2.6
6.1.10 Specific Gravity
2.86
2.2-2.8
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.8-2.9 g/cm3
2.2-2.8 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.95 kJ/Kg K
Rank: 9 (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Russia, South Korea
China, India, Kazakhstan, Mongolia, Russia, Uzbekistan
7.1.2 Africa
Western Africa
Namibia, Nigeria, South Africa
7.1.3 Europe
United Kingdom
Austria, Denmark, Germany, Great Britain, Netherlands, Norway, Poland, Sweden, Switzerland, United Kingdom
7.1.4 Others
Not Yet Found
Greenland
7.2 Deposits in Western Continents
7.2.1 North America
USA
Canada, USA
7.2.2 South America
Not Yet Found
Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
Central Australia, Western Australia
New South Wales, New Zealand

Lherzolite vs Ganister Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Lherzolite and Ganister Reserves. Lherzolite is a type of ultramafic igneous rock which contains essential olivine and clinopyroxene and orthopyroxene in equal proportions. A ganister is a hard, fine-grained quartzose sandstone or orthoquartzite which is basically used in the manufacture of silica brick typically used to line furnaces and is a type of sedimentary rocks.. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Lherzolite vs Ganister information and Lherzolite vs Ganister characteristics in the upcoming sections.

Lherzolite vs Ganister Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Lherzolite vs Ganister characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Lherzolite and Properties of Ganister. Learn more about Lherzolite vs Ganister in the next section. The interior uses of Lherzolite include Decorative aggregates, Entryways, Homes and Interior decoration whereas the interior uses of Ganister include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration. Due to some exceptional properties of Lherzolite and Ganister, they have various applications in construction industry. The uses of Lherzolite in construction industry include Landscaping, Manufacture of magnesium and dolomite refractories, Used for flooring, stair treads, borders and window sills. and that of Ganister include Cement manufacture, Construction aggregate, For road aggregate, Production of glass and ceramics, Raw material for the manufacture of mortar.

More about Lherzolite and Ganister

Here you can know more about Lherzolite and Ganister. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Lherzolite and Ganister consists of mineral content and compound content. The mineral content of Lherzolite includes Harzburgite, Olivine, Pyroxene, Pyrrhotite and mineral content of Ganister includes Calcite, Clay, Clay Minerals, Feldspar, Micas, Quartz. You can also check out the list of all Igneous Rocks. When we have to compare Lherzolite vs Ganister, the texture, color and appearance plays an important role in determining the type of rock. Lherzolite is available in black, dark greenish - grey, green, pink, purple colors whereas, Ganister is available in beige, black, brown, colourless, cream, dark brown, green, grey, light green, light to dark grey, pink, red, white, yellow colors. Appearance of Lherzolite is Glassy, Vesicular and Foilated and that of Ganister is Rough. Properties of rock is another aspect for Lherzolite vs Ganister. The hardness of Lherzolite is 6.5 and that of Ganister is 6-7. The types of Lherzolite are Garnet Lherzolite whereas types of Ganister are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Lherzolite and Ganister is white. The specific heat capacity of Lherzolite is 0.95 kJ/Kg K and that of Ganister is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Lherzolite is heat resistant, impact resistant, pressure resistant, wear resistant whereas Ganister is heat resistant, impact resistant, pressure resistant.

Let Others Know
×