×

Latite
Latite

Trachyte
Trachyte



ADD
Compare
X
Latite
X
Trachyte

Latite vs Trachyte

Add ⊕
1 Definition
1.1 Definition
Latite is an igneous, volcanic rock, with aphanitic-aphyric to aphyric-porphyritic texture
Trachyte is a grey fine-grained volcanic rock which mainly consists of alkali feldspar
1.2 History
1.2.1 Origin
Italy
Unknown
1.2.2 Discoverer
Unknown
Alexandre Brongniart and René Just Haüy
1.3 Etymology
From the Latin word latium
From Greek trakhus rough’ or trakhutēs roughness
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Volcanic
Volcanic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Aphanitic to Porphyritic
Aphanitic to Porphyritic
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White
Black, Brown, Dark Greenish - Grey, Green, Grey, Light to Dark Grey, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Rough
Banded
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Entryways, Interior Decoration
Decorative Aggregates, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Paving Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
As Dimension Stone, Building houses or walls, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Metallurgical Flux, Soil Conditioner, Source of Magnesia (MgO)
Cemetery Markers, Creating Artwork
4 Types
4.1 Types
Rhomb porphyries
Not Available
4.2 Features
Host Rock for Lead
Available in Lots of Colors and Patterns, Is one of the oldest rock, Matrix variable
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Data Not Available
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Data Not Available
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Latite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Trachyte is an igneous volcanic rock with an aphanitic to porphyritic texture. It is the volcanic equivalent of syenite rock and forms as a result of magmatic differentiation.
5.2 Composition
5.2.1 Mineral Content
Alkali feldspar, Biotite, Plagioclase, Pyroxene
Augite, Biotite, Feldspar, Hornblade, Plagioclase, Quartz
5.2.2 Compound Content
CaO, Cl, MgO
Potassium Oxide, Sodium Oxide, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism
Cataclastic Metamorphism, Contact Metamorphism, Regional Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion, Glacier Erosion, Sea Erosion, Water Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5-5.56
Coal
1 7
6.1.2 Grain Size
Fine Grained
Fine Grained
6.1.3 Fracture
Conchoidal
Not Available
6.1.4 Streak
White
White
6.1.5 Porosity
Very Less Porous
Less Porous
6.1.6 Luster
Subvitreous to Dull
Metallic
6.1.7 Compressive Strength
310.00 N/mm2150.00 N/mm2
Obsidian
0.15 450
6.1.8 Cleavage
Perfect
Not Available
6.1.9 Toughness
2.7
Not Available
6.1.10 Specific Gravity
2.862.7
Granite
0 8.4
6.1.11 Transparency
Translucent
Opaque
6.1.12 Density
2.8-2.9 g/cm32.43-2.45 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
0.92 kJ/Kg KNA
Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Pressure Resistant
Heat Resistant, Impact Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
7.1.2 Africa
Not Yet Found
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
7.1.3 Europe
Bulgaria
Bulgaria, England, Germany, Norway, Romania, Switzerland
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
USA
7.2.2 South America
Not Yet Found
Brazil, Chile
7.3 Deposits in Oceania Continent
7.3.1 Australia
Not Yet Found
New Zealand, Queensland, South Australia, Western Australia

Latite vs Trachyte Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Latite and Trachyte Reserves. Latite is an igneous, volcanic rock, with aphanitic-aphyric to aphyric-porphyritic texture. Trachyte is a grey fine-grained volcanic rock which mainly consists of alkali feldspar. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Latite vs Trachyte information and Latite vs Trachyte characteristics in the upcoming sections.

Latite vs Trachyte Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Latite vs Trachyte characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Latite and Properties of Trachyte. Learn more about Latite vs Trachyte in the next section. The interior uses of Latite include Decorative aggregates, Entryways and Interior decoration whereas the interior uses of Trachyte include Decorative aggregates, Flooring, Homes and Interior decoration. Due to some exceptional properties of Latite and Trachyte, they have various applications in construction industry. The uses of Latite in construction industry include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories and that of Trachyte include As dimension stone, Building houses or walls, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories.

More about Latite and Trachyte

Here you can know more about Latite and Trachyte. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Latite and Trachyte consists of mineral content and compound content. The mineral content of Latite includes Alkali feldspar, Biotite, Plagioclase, Pyroxene and mineral content of Trachyte includes Augite, Biotite, Feldspar, Hornblade, Plagioclase, Quartz. You can also check out the list of all Igneous Rocks. When we have to compare Latite vs Trachyte, the texture, color and appearance plays an important role in determining the type of rock. Latite is available in black, brown, colourless, green, grey, pink, white colors whereas, Trachyte is available in black, brown, dark greenish - grey, green, grey, light to dark grey, white colors. Appearance of Latite is Rough and that of Trachyte is Banded. Properties of rock is another aspect for Latite vs Trachyte. The hardness of Latite is 5-5.5 and that of Trachyte is 6. The types of Latite are Rhomb porphyries whereas types of Trachyte are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Latite and Trachyte is white. The specific heat capacity of Latite is 0.92 kJ/Kg K and that of Trachyte is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Latite is heat resistant, pressure resistant whereas Trachyte is heat resistant, impact resistant, wear resistant.