×

Lamprophyre
Lamprophyre

Limestone
Limestone



ADD
Compare
X
Lamprophyre
X
Limestone

Lamprophyre vs Limestone

1 Definition
1.1 Definition
Lamprophyre is uncommon igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks and small intrusions
Limestone is a sedimentary rock composed mostly of calcite and aragonite, which are different crystal forms of calcium carbonate
1.2 History
1.2.1 Origin
Unknown
New Zealand
1.2.2 Discoverer
Unknown
Belsazar Hacquet
1.3 Etymology
From Greek lampros bright and shining + porphureos purple
From lime and stone in late 14th Century
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Plutonic
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Porphyritic
Clastic or Non-Clastic
2.2 Color
Black, Bluish - Grey, Brown, Dark Greenish - Grey, Green, Grey
Beige, Black, Blue, Brown, Cream, Gold, Green, Grey, Light Green, Light Grey, Linen, Pink, Red, Rust, Silver, White, Yellow
2.3 Maintenance
Less
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Dull, Banded and Foilated
Rough and Banded
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Decorative Aggregates, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, Office Buildings
As Building Stone, As Facing Stone, Garden Decoration, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
Cement Manufacture, Cobblestones, for Road Aggregate, Production of Glass and Ceramics, Raw material for the manufacture of mortar, Roadstone, Source of calcium
3.2.2 Medical Industry
Taken as a Supplement for Calcium or Magnesium
In Chemical and Pharmaceutical Industry, Medicines and Cosmetics
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture
Artifacts, Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
Animal feed filler, As a Feed Additive for Livestock, Paper Industry, Raw material for manufacture of quicklime, slaked lime, Soil Conditioner, Used in aquariums, Whiting material in toothpaste, paint and paper
4 Types
4.1 Types
Minette, Alnoite, Camptonite, Monchiquite, Fourchite, Vogesite, Appinite and Spessartite
Chalk, Coquina, Fossiliferous Limestone, Lithographic Limestone, Oolitic Limestone, Travertine, Tufa
4.2 Features
Always found as volcanic pipes over deep continental crust, Host rock for Diamond, Is one of the oldest rock, Surfaces are often shiny
Host Rock for Lead, Stalactites and stalagmites are formed from this rock, Zinc and Copper Deposits
4.3 Archaeological Significance
4.3.1 Monuments
Used
Used
4.3.2 Famous Monuments
Data Not Available
Acropolis of Athens in Greece, Agia Sophia in Istanbul, Turkey, Al Aqsa Mosque in Jerusalem, Angkor Wat in Cambodia, Big Ben in London, Charminar in Hyderabad, India, Chhatrapati Shivaji Terminus in Maharashtra, India, Chichen Itza in Mexico, Empire State Building in New York, Khajuraho Temples, India, Kremlin in Moscow, Louvre in Paris, France, Neuschwanstein in Bavaria, Potala Palace in Lahasa, Tibet, Wailing Wall in Jerusalem
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Ajanta Caves in Maharashtra, India, Elephanta Caves in Maharashtra, India
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Lamprophyre formation takes place deep beneath the Earth’s surface at around 150 to 450 kilometres, and are erupted rapidly and violently.
Limestone is a sedimentary rock which is mainly made up of calcium carbonate.
5.2 Composition
5.2.1 Mineral Content
Amphibole, Carbonate, Garnet, Micas, Olivine, Phlogopite, Pyroxene
Calcite, Chert, Clay, Dolomite, Quartz, Sand, Silt
5.2.2 Compound Content
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, MgO
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Impact Metamorphism
Not Applicable
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Coastal Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
5-63-4
Coal
1 7
6.1.2 Grain Size
Fine to Coarse Grained
Fine Grained
6.1.3 Fracture
Conchoidal
Splintery
6.1.4 Streak
White
White
6.1.5 Porosity
Very Less Porous
Less Porous
6.1.6 Luster
Subvitreous to Dull
Dull to Pearly
6.1.7 Compressive Strength
NA115.00 N/mm2
Obsidian
0.15 450
6.1.8 Cleavage
Conchoidal
Non-Existent
6.1.9 Toughness
Not Available
1
6.1.10 Specific Gravity
2.86-2.872.3-2.7
Granite
0 8.4
6.1.11 Transparency
Translucent to Opaque
Opaque
6.1.12 Density
2.95-2.96 g/cm32.3-2.7 g/cm3
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
NA0.91 kJ/Kg K
Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Impact Resistant
Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Russia
Brunei, India, Indonesia, Malaysia, Singapore, Thailand, Vietnam
7.1.2 Africa
Angola, Botswana, Cameroon, Ethiopia, South Africa
Cameroon, Chad, Ghana, Kenya, Malawi, Sudan, Tanzania, Togo, Zambia, Zimbabwe
7.1.3 Europe
England, Hungary, Iceland, United Kingdom
United Kingdom
7.1.4 Others
Antarctica, Greenland
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Mexico, USA
USA
7.2.2 South America
Argentina, Colombia, Ecuador
Colombia
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, Queensland, South Australia, Western Australia
Adelaide, New Zealand, Queensland, Tonga, Victoria, Yorke Peninsula

Lamprophyre vs Limestone Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Lamprophyre and Limestone Reserves. Lamprophyre is uncommon igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks and small intrusions. Limestone is a sedimentary rock composed mostly of calcite and aragonite, which are different crystal forms of calcium carbonate. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Lamprophyre vs Limestone information and Lamprophyre vs Limestone characteristics in the upcoming sections.

Lamprophyre vs Limestone Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Lamprophyre vs Limestone characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Lamprophyre and Properties of Limestone. Learn more about Lamprophyre vs Limestone in the next section. The interior uses of Lamprophyre include Decorative aggregates and Interior decoration whereas the interior uses of Limestone include Decorative aggregates and Interior decoration. Due to some exceptional properties of Lamprophyre and Limestone, they have various applications in construction industry. The uses of Lamprophyre in construction industry include As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories and that of Limestone include Cement manufacture, Cobblestones, For road aggregate, Production of glass and ceramics, Raw material for the manufacture of mortar, Roadstone, Source of calcium.

More about Lamprophyre and Limestone

Here you can know more about Lamprophyre and Limestone. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Lamprophyre and Limestone consists of mineral content and compound content. The mineral content of Lamprophyre includes Amphibole, Carbonate, Garnet, Micas, Olivine, Phlogopite, Pyroxene and mineral content of Limestone includes Calcite, Chert, Clay, Dolomite, Quartz, Sand, Silt. You can also check out the list of all Igneous Rocks. When we have to compare Lamprophyre vs Limestone, the texture, color and appearance plays an important role in determining the type of rock. Lamprophyre is available in black, bluish - grey, brown, dark greenish - grey, green, grey colors whereas, Limestone is available in beige, black, blue, brown, cream, gold, green, grey, light green, light grey, linen, pink, red, rust, silver, white, yellow colors. Appearance of Lamprophyre is Dull, Banded and Foilated and that of Limestone is Rough and Banded. Properties of rock is another aspect for Lamprophyre vs Limestone. The hardness of Lamprophyre is 5-6 and that of Limestone is 3-4. The types of Lamprophyre are Minette, Alnoite, Camptonite, Monchiquite, Fourchite, Vogesite, Appinite and Spessartite whereas types of Limestone are Chalk, Coquina, Fossiliferous Limestone, Lithographic Limestone, Oolitic Limestone, Travertine, Tufa. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Lamprophyre and Limestone is white. The specific heat capacity of Lamprophyre is Not Available and that of Limestone is 0.91 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Lamprophyre is heat resistant, impact resistant whereas Limestone is pressure resistant.