Home

Igneous Rocks + -

Fossil Rocks + -

Metamorphic Rocks + -

Durable Rocks + -

Medium Grained Rocks + -

Compare Rocks


Lamprophyre vs Dolomite


Dolomite vs Lamprophyre


Definition

Definition
Lamprophyre is uncommon igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks and small intrusions   
Dolomite is a sedimentary rock containing more than 50 percent of the mineral dolomite by weight   

History
  
  

Origin
Unknown   
Southern Alps, France   

Discoverer
Unknown   
Dolomieu   

Etymology
From Greek lampros bright and shining + porphureos purple   
From French, from the name of Dolomieu (1750–1801), the French geologist who discovered the rock   

Class
Igneous Rocks   
Sedimentary Rocks   

Sub-Class
Durable Rock, Medium Hardness Rock   
Durable Rock, Medium Hardness Rock   

Family
  
  

Group
Plutonic   
Not Applicable   

Other Categories
Coarse Grained Rock, Fine Grained Rock, Opaque Rock   
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock   

Texture

Texture
Porphyritic   
Earthy   

Color
Black, Bluish - Grey, Brown, Dark Greenish - Grey, Green, Grey   
Black, Brown, Colourless, Green, Grey, Pink, White   

Maintenance
Less   
Less   

Durability
Durable   
Durable   

Water Resistant
Yes   
No   

Scratch Resistant
Yes   
Yes   

Stain Resistant
Yes   
No   

Wind Resistant
No   
No   

Acid Resistant
No   
No   

Appearance
Dull, Banded and Foilated   
Glassy or Pearly   

Uses

Architecture
  
  

Interior Uses
Decorative Aggregates, Interior Decoration   
Decorative Aggregates, Homes, Interior Decoration   

Exterior Uses
As Building Stone, Office Buildings   
Garden Decoration, Office Buildings   

Other Architectural Uses
Curbing   
Not Yet Used   

Industry
  
  

Construction Industry
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories   
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics, Serves as an Oil and Gas Reservoir rock   

Medical Industry
Taken as a Supplement for Calcium or Magnesium   
Taken as a Supplement for Calcium or Magnesium   

Antiquity Uses
Artifacts, Monuments, Sculpture   
Artifacts, Jewellery, Monuments, Sculpture, Small Figurines   

Other Uses
  
  

Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)   
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)   

Types

Types
Minette, Alnoite, Camptonite, Monchiquite, Fourchite, Vogesite, Appinite and Spessartite   
Boninite and Jasperoid   

Features
Always found as volcanic pipes over deep continental crust, Host rock for Diamond, Is one of the oldest rock, Surfaces are often shiny   
Host Rock for Lead, Traps for subsurface fluids like Oil and Natural Gas., Zinc and Copper Deposits   

Archaeological Significance
  
  

Monuments
Used   
Used   

Famous Monuments
Data Not Available   
Data Not Available   

Sculpture
Used   
Used   

Famous Sculptures
Data Not Available   
Data Not Available   

Pictographs
Used   
Used   

Petroglyphs
Used   
Used   

Figurines
Used   
Used   

Fossils
Absent   
Present   

Formation

Formation
Lamprophyre formation takes place deep beneath the Earth’s surface at around 150 to 450 kilometres, and are erupted rapidly and violently.   
Dolomite rocks are originally deposited as calcite or aragonite rich limestone, but during diagenesis process, the calcite or aragonite is transformed into dolomite.   

Composition
  
  

Mineral Content
Amphibole, Carbonate, Garnet, Micas, Olivine, Phlogopite, Pyroxene   
Clay Minerals, Pyrite, Quartz, Sulfides   

Compound Content
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide   
NaCl, CaO, Carbon Dioxide, Magnesium Carbonate, MgO   

Transformation
  
  

Metamorphism
Yes   
Yes   

Types of Metamorphism
Cataclastic Metamorphism, Impact Metamorphism   
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism   

Weathering
Yes   
No   

Types of Weathering
Biological Weathering   
Not Applicable   

Erosion
Yes   
No   

Types of Erosion
Chemical Erosion, Water Erosion, Wind Erosion   
Not Applicable   

Properties

Physical Properties
  
  

Hardness
5-6   
3.5-4   

Grain Size
Fine to Coarse Grained   
Medium to Fine Coarse Grained   

Fracture
Conchoidal   
Conchoidal   

Streak
White   
White   

Porosity
Very Less Porous   
Less Porous   

Luster
Subvitreous to Dull   
Vitreous and Pearly   

Compressive Strength
Not Available   
140.00 N/mm2   
15

Cleavage
Conchoidal   
Perfect   

Toughness
Not Available   
1   

Specific Gravity
2.86-2.87   
2.8-3   

Transparency
Translucent to Opaque   
Transparent to Translucent   

Density
2.95-2.96 g/cm3   
2.8-2.9 g/cm3   

Thermal Properties
  
  

Specific Heat Capacity
Not Available   
0.92 kJ/Kg K   
10

Resistance
Heat Resistant, Impact Resistant   
Heat Resistant, Pressure Resistant, Wear Resistant   

Reserves

Deposits in Eastern Continents
  
  

Asia
Russia   
China, India   

Africa
Angola, Botswana, Cameroon, Ethiopia, South Africa   
Morocco, Namibia   

Europe
England, Hungary, Iceland, United Kingdom   
Austria, Italy, Romania, Spain, Switzerland   

Others
Antarctica, Greenland   
Not Yet Found   

Deposits in Western Continents
  
  

North America
Canada, Mexico, USA   
Mexico, USA   

South America
Argentina, Colombia, Ecuador   
Brazil, Colombia   

Deposits in Oceania Continent
  
  

Australia
New South Wales, New Zealand, Queensland, South Australia, Western Australia   
New South Wales, Queensland, Yorke Peninsula   

Definition >>
<< All

Lamprophyre vs Dolomite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Lamprophyre and Dolomite Reserves. Lamprophyre is uncommon igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks and small intrusions. Dolomite is a sedimentary rock containing more than 50 percent of the mineral dolomite by weight. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Lamprophyre vs Dolomite information and Lamprophyre vs Dolomite characteristics in the upcoming sections.

Compare Igneous Rocks

Lamprophyre vs Dolomite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Lamprophyre vs Dolomite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Lamprophyre and Properties of Dolomite. Learn more about Lamprophyre vs Dolomite in the next section. The interior uses of Lamprophyre include Decorative aggregates and Interior decoration whereas the interior uses of Dolomite include Decorative aggregates, Homes and Interior decoration. Due to some exceptional properties of Lamprophyre and Dolomite, they have various applications in construction industry. The uses of Lamprophyre in construction industry include As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories and that of Dolomite include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics, Serves as an oil and gas reservoir rock.

More about Lamprophyre and Dolomite

Here you can know more about Lamprophyre and Dolomite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Lamprophyre and Dolomite consists of mineral content and compound content. The mineral content of Lamprophyre includes Amphibole, Carbonate, Garnet, Micas, Olivine, Phlogopite, Pyroxene and mineral content of Dolomite includes Clay Minerals, Pyrite, Quartz, Sulfides. You can also check out the list of all Igneous Rocks. When we have to compare Lamprophyre vs Dolomite, the texture, color and appearance plays an important role in determining the type of rock. Lamprophyre is available in black, bluish - grey, brown, dark greenish - grey, green, grey colors whereas, Dolomite is available in black, brown, colourless, green, grey, pink, white colors. Appearance of Lamprophyre is Dull, Banded and Foilated and that of Dolomite is Glassy or Pearly. Properties of rock is another aspect for Lamprophyre vs Dolomite. The hardness of Lamprophyre is 5-6 and that of Dolomite is 3.5-4. The types of Lamprophyre are Minette, Alnoite, Camptonite, Monchiquite, Fourchite, Vogesite, Appinite and Spessartite whereas types of Dolomite are Boninite and Jasperoid. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Lamprophyre and Dolomite is white. The specific heat capacity of Lamprophyre is Not Available and that of Dolomite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Lamprophyre is heat resistant, impact resistant whereas Dolomite is heat resistant, pressure resistant, wear resistant.

Igneous Rocks

Igneous Rocks

» More Igneous Rocks

Compare Igneous Rocks

» More Compare Igneous Rocks