Home
Compare Rocks


Lamprophyre and Migmatite


Migmatite and Lamprophyre


Definition

Definition
Lamprophyre is uncommon igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks and small intrusions   
Migmatite is typically a granitic rock within a metamorphic host rock which is composed of two intermingled but distinguishable components   

History
  
  

Origin
Unknown   
Southern Alps, France   

Discoverer
Unknown   
Jakob Sederholm   

Etymology
From Greek lampros bright and shining + porphureos purple   
From the Greek word migma which means a mixture   

Class
Igneous Rocks   
Metamorphic Rocks   

Sub-Class
Durable Rock, Medium Hardness Rock   
Durable Rock, Medium Hardness Rock   

Family
  
  

Group
Plutonic   
Not Applicable   

Other Categories
Coarse Grained Rock, Fine Grained Rock, Opaque Rock   
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock   

Texture

Texture
Porphyritic   
Foliated   

Color
Black, Bluish - Grey, Brown, Dark Greenish - Grey, Green, Grey   
Black, Bluish - Grey, Brown, Brown- Black, Dark Greenish - Grey, Dark Grey to Black   

Maintenance
Less   
More   

Durability
Durable   
Durable   

Water Resistant
Yes   
Yes   

Scratch Resistant
Yes   
Yes   

Stain Resistant
Yes   
No   

Wind Resistant
No   
No   

Acid Resistant
No   
No   

Appearance
Dull, Banded and Foilated   
Dull, Banded and Foilated   

Uses

Architecture
  
  

Interior Uses
Decorative Aggregates, Interior Decoration   
Countertops, Flooring, Kitchens   

Exterior Uses
As Building Stone, Office Buildings   
As Building Stone, As Facing Stone   

Other Architectural Uses
Curbing   
Curbing   

Industry
  
  

Construction Industry
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories   
As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement   

Medical Industry
Taken as a Supplement for Calcium or Magnesium   
Not Yet Used   

Antiquity Uses
Artifacts, Monuments, Sculpture   
Artifacts   

Other Uses
  
  

Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)   
Cemetery Markers, Jewelry, Tombstones, Used to manufracture paperweights and bookends   

Types

Types
Minette, Alnoite, Camptonite, Monchiquite, Fourchite, Vogesite, Appinite and Spessartite   
Diatexites and Metatexites   

Features
Always found as volcanic pipes over deep continental crust, Host rock for Diamond, Is one of the oldest rock, Surfaces are often shiny   
Generally rough to touch, Is one of the oldest rock   

Archaeological Significance
  
  

Monuments
Used   
Not Yet Used   

Famous Monuments
Data Not Available   
Not Applicable   

Sculpture
Used   
Not Yet Used   

Famous Sculptures
Data Not Available   
Not Applicable   

Pictographs
Used   
Used   

Petroglyphs
Used   
Used   

Figurines
Used   
Not Yet Used   

Fossils
Absent   
Absent   

Formation

Formation
Lamprophyre formation takes place deep beneath the Earth’s surface at around 150 to 450 kilometres, and are erupted rapidly and violently.   
Migmatites form by high temperature regional and thermal metamorphism of protolith rocks where rocks melt partially due to high temperature.   

Composition
  
  

Mineral Content
Amphibole, Carbonate, Garnet, Micas, Olivine, Phlogopite, Pyroxene   
Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon   

Compound Content
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Silicon Dioxide, Titanium Dioxide   
Aluminium Oxide, NaCl, CaO, Carbon Dioxide, Iron(III) Oxide, FeO, Potassium Oxide, Magnesium Carbonate, MgO, MnO, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide   

Transformation
  
  

Metamorphism
Yes   
Yes   

Types of Metamorphism
Cataclastic Metamorphism, Impact Metamorphism   
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism   

Weathering
Yes   
Yes   

Types of Weathering
Biological Weathering   
Biological Weathering, Chemical Weathering, Mechanical Weathering   

Erosion
Yes   
Yes   

Types of Erosion
Chemical Erosion, Water Erosion, Wind Erosion   
Chemical Erosion, Glacier Erosion, Water Erosion, Wind Erosion   

Properties

Physical Properties
  
  

Hardness
5-6   
5.5-6.5   

Grain Size
Fine to Coarse Grained   
Medium to Fine Coarse Grained   

Fracture
Conchoidal   
Irregular   

Streak
White   
White   

Porosity
Very Less Porous   
Very Less Porous   

Luster
Subvitreous to Dull   
Dull to Pearly to Subvitreous   

Cleavage
Conchoidal   
Poor   

Toughness
Not Available   
1.2   

Specific Gravity
2.86-2.87   
2.65-2.75   

Transparency
Translucent to Opaque   
Opaque   

Density
2.95-2.96 g/cm3   
Not Available   

Thermal Properties
  
  

Resistance
Heat Resistant, Impact Resistant   
Heat Resistant, Pressure Resistant   

Reserves

Deposits in Eastern Continents
  
  

Asia
Russia   
China, India, Iran, Iraq, Kazakhstan, Kyrgyzstan, Mongolia, Russia   

Africa
Angola, Botswana, Cameroon, Ethiopia, South Africa   
Cameroon, Ethiopia, Ghana, Kenya, Madagascar, Morocco, Mozambique, Namibia, Nigeria, Tanzania, Togo   

Europe
England, Hungary, Iceland, United Kingdom   
Albania, Austria, Bosnia and Herzegovina, Finland, France, Georgia, Germany, Hungary, Italy, Kosovo, Monaco, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, Sweden, Switzerland, Ukraine, United Kingdom   

Others
Antarctica, Greenland   
Not Yet Found   

Deposits in Western Continents
  
  

North America
Canada, Mexico, USA   
Canada, Costa Rica, Cuba, Mexico, Panama, USA   

South America
Argentina, Colombia, Ecuador   
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela   

Deposits in Oceania Continent
  
  

Australia
New South Wales, New Zealand, Queensland, South Australia, Western Australia   
New South Wales, New Zealand, Queensland, Victoria   

Summary >>
<< Reserves

All about Lamprophyre and Migmatite Properties

Know all about Lamprophyre and Migmatite properties here. All properties of rocks are important as they define the type of rock and its application. Lamprophyre belongs to Igneous Rocks while Migmatite belongs to Metamorphic Rocks.Texture of Lamprophyre is Porphyritic whereas that of Migmatite is Foliated. Lamprophyre appears Dull, Banded and Foilated and Migmatite appears Dull, Banded and Foilated. The luster of Lamprophyre is subvitreous to dull while that of Migmatite is dull to pearly to subvitreous. Lamprophyre is available in black, bluish - grey, brown, dark greenish - grey, green, grey colors whereas Migmatite is available in black, bluish - grey, brown, brown- black, dark greenish - grey, dark grey to black colors. The commercial uses of Lamprophyre are an oil and gas reservoir, as a feed additive for livestock, gemstone, metallurgical flux, production of lime, soil conditioner, source of magnesia (mgo) and that of Migmatite are cemetery markers, jewelry, tombstones, used to manufracture paperweights and bookends.

Compare Igneous Rocks

Igneous Rocks

Igneous Rocks

» More Igneous Rocks

Compare Igneous Rocks

» More Compare Igneous Rocks