Home
×

Jasperoid
Jasperoid

Obsidian
Obsidian



ADD
Compare
X
Jasperoid
X
Obsidian

Jasperoid vs Obsidian

1 Definition
1.1 Definition
Jasperoid is a rare, peculiar type of metasomatic alteration of rocks
Obsidian is a naturally occurring volcanic glass formed as an extrusive igneous rock. It is produced when felsic lava extruded from a volcano cools rapidly with minimum crystal growth
1.2 History
1.2.1 Origin
USA
Ethiopia
1.2.2 Discoverer
Unknown
Obsius
1.3 Etymology
From silica, the main mineral content of Jasperoid
From Latin obsidianus, misprint of Obsianus (lapis) (stone) of Obsius
1.4 Class
Sedimentary Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Volcanic
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Opaque Rock
2 Texture
2.1 Texture
Earthy
Glassy
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White
Black, Blue, Brown, Green, Orange, Red, Tan, Yellow
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
59% Sedimentary Rocks Rocks have it !
81% Igneous Rocks Rocks have it !
2.4.2 Scratch Resistant
62% Sedimentary Rocks Rocks have it !
86% Igneous Rocks Rocks have it !
2.4.3 Stain Resistant
43% Sedimentary Rocks Rocks have it !
66% Igneous Rocks Rocks have it !
2.4.4 Wind Resistant
38% Sedimentary Rocks Rocks have it !
49% Igneous Rocks Rocks have it !
2.4.5 Acid Resistant
22% Sedimentary Rocks Rocks have it !
48% Igneous Rocks Rocks have it !
2.5 Appearance
Glassy or Pearly
Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration
Decorative Aggregates, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, Garden Decoration, Office Buildings, Paving Stone
Garden Decoration
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics, Serves as an Oil and Gas Reservoir rock
Arrowheads, Cutting Tool, Knives, Scrapers, Spear Points
3.2.2 Medical Industry
Taken as a Supplement for Calcium or Magnesium
Surgery
3.3 Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture
Artifacts, Jewellery
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
Creating Artwork, Mirror, Used in aquariums
4 Types
4.1 Types
Not Available
Fireworks Obsidian, Mahogany, Sheen Obsidian, Snowflake obsidian and Velvet Peacock Obsidian
4.2 Features
Host Rock for Lead, Traps for subsurface fluids like Oil and Natural Gas., Zinc and Copper Deposits
Blocks negativity, Helps to protect against depression
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Present
Absent
5 Formation
5.1 Formation
Jasperoid is a rare and peculiar type of metasomatic alteration of rocks. It is formed by extreme alteration of wall rocks within a shear zone which may occur in sediments, andesites, trachytes and basalts.
When the lava is released from volcano, it undergoes a very rapid cooling which freezes the mechanisms of crystallization. The result is a volcanic glass with a uniform smooth texture.
5.2 Composition
5.2.1 Mineral Content
Clay Minerals, Pyrite, Quartz, Sulfides
Not Available
5.2.2 Compound Content
NaCl, CaO, Carbon Dioxide, Magnesium Carbonate, MgO
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
19% Sedimentary Rocks Rocks have it !
97% Igneous Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
5.3.3 Weathering
78% Sedimentary Rocks Rocks have it !
99% Igneous Rocks Rocks have it !
5.3.4 Types of Weathering
Not Applicable
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
86% Sedimentary Rocks Rocks have it !
92% Igneous Rocks Rocks have it !
5.3.6 Types of Erosion
Not Applicable
Chemical Erosion, Coastal Erosion, Glacier Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3.5-4
5-5.5
6.1.2 Grain Size
Medium to Fine Coarse Grained
Not Applicable
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Very Less Porous
6.1.6 Luster
Vitreous and Pearly
Vitreous
6.1.7 Compressive Strength
Flint
140.00 N/mm2
Rank: 15 (Overall)
0.15 N/mm2
Rank: 33 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Non-Existent
6.1.9 Toughness
1
Not Available
6.1.10 Specific Gravity
2.8-3
2.6-2.7
6.1.11 Transparency
Transparent to Translucent
Translucent
6.1.12 Density
2.8-2.9 g/cm3
2.6 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Impact Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India
Afghanistan, Indonesia, Japan, Russia
7.1.2 Africa
Morocco, Namibia
Kenya
7.1.3 Europe
Austria, Italy, Romania, Spain, Switzerland
Greece, Hungary, Iceland, Italy, Turkey
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Mexico, USA
Canada, Mexico, USA
7.2.2 South America
Brazil, Colombia
Argentina, Chile, Ecuador, Peru
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, Queensland, Yorke Peninsula
New Zealand

Jasperoid vs Obsidian Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Jasperoid and Obsidian Reserves. Jasperoid is a rare, peculiar type of metasomatic alteration of rocks. Obsidian is a naturally occurring volcanic glass formed as an extrusive igneous rock. It is produced when felsic lava extruded from a volcano cools rapidly with minimum crystal growth. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Jasperoid vs Obsidian information and Jasperoid vs Obsidian characteristics in the upcoming sections.

Jasperoid vs Obsidian Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Jasperoid vs Obsidian characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Jasperoid and Properties of Obsidian. Learn more about Jasperoid vs Obsidian in the next section. The interior uses of Jasperoid include Decorative aggregates, Floor tiles, Homes and Interior decoration whereas the interior uses of Obsidian include Decorative aggregates and Interior decoration. Due to some exceptional properties of Jasperoid and Obsidian, they have various applications in construction industry. The uses of Jasperoid in construction industry include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics, Serves as an oil and gas reservoir rock and that of Obsidian include Arrowheads, Cutting tool, Knives, Scrapers, Spear points.

More about Jasperoid and Obsidian

Here you can know more about Jasperoid and Obsidian. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Jasperoid and Obsidian consists of mineral content and compound content. The mineral content of Jasperoid includes Clay Minerals, Pyrite, Quartz, Sulfides and mineral content of Obsidian is not available. You can also check out the list of all Sedimentary Rocks. When we have to compare Jasperoid vs Obsidian, the texture, color and appearance plays an important role in determining the type of rock. Jasperoid is available in black, brown, colourless, green, grey, pink, white colors whereas, Obsidian is available in black, blue, brown, green, orange, red, tan, yellow colors. Appearance of Jasperoid is Glassy or Pearly and that of Obsidian is Shiny. Properties of rock is another aspect for Jasperoid vs Obsidian. The hardness of Jasperoid is 3.5-4 and that of Obsidian is 5-5.5. The types of Jasperoid are Not Available whereas types of Obsidian are Fireworks Obsidian, Mahogany, Sheen Obsidian, Snowflake obsidian and Velvet Peacock Obsidian. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Jasperoid and Obsidian is white. The specific heat capacity of Jasperoid is 0.92 kJ/Kg K and that of Obsidian is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Jasperoid is heat resistant, pressure resistant, wear resistant whereas Obsidian is heat resistant, impact resistant.

Let Others Know
×