Home
Compare Rocks


Ignimbrite vs Kenyte


Kenyte vs Ignimbrite


Definition

Definition
Ignimbrite is a volcanic rock consisting mainly of pumice fragments, formed by the consolidation of material deposited by pyroclastic flows   
Kenyte is a variety of porphyritic phonolite or trachyte rock with rhomb shaped phenocrysts of anorthoclase with variable olivine and augite in a glassy matrix   

History
  
  

Origin
New Zealand   
Mount Kenya   

Discoverer
Patrick Marshall   
J. W. Gregory   

Etymology
From Latin ignis fire + imber, imbr- shower of rain, storm cloud + -ite   
From the mountain ranges- Mount Kenya and is named by J. W. Gregory in 1900   

Class
Igneous Rocks   
Igneous Rocks   

Sub-Class
Durable Rock, Medium Hardness Rock   
Durable Rock, Medium Hardness Rock   

Family
  
  

Group
Volcanic   
Not Applicable   

Other Categories
Fine Grained Rock, Opaque Rock   
Fine Grained Rock, Opaque Rock   

Texture

Texture
Aphanitic   
Glassy, Granular   

Color
Beige, Black, Brown, Grey, Pink, White   
Brown, Buff, Cream, Green, Grey, Pink, White   

Maintenance
More   
More   

Durability
Durable   
Durable   

Water Resistant
Yes   
Yes   

Scratch Resistant
Yes   
Yes   

Stain Resistant
No   
No   

Wind Resistant
Yes   
No   

Acid Resistant
No   
No   

Appearance
Dull, Vesicular and Foilated   
Banded and Foilated   

Uses

Architecture
  
  

Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration   
Decorative Aggregates, Entryways, Homes, Interior Decoration, Kitchens   

Exterior Uses
As Building Stone, Garden Decoration, Office Buildings, Paving Stone   
As Building Stone, Garden Decoration, Paving Stone   

Other Architectural Uses
Curbing   
Curbing   

Industry
  
  

Construction Industry
Building houses or walls, Construction Aggregate   
As Dimension Stone, Cement Manufacture, Construction Aggregate, for Road Aggregate, Landscaping, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics   

Medical Industry
Not Yet Used   
Not Yet Used   

Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines   
Artifacts, Monuments, Sculpture   

Other Uses
  
  

Commercial Uses
Cemetery Markers, Commemorative Tablets, Creating Artwork   
Cemetery Markers, Creating Artwork   

Types

Types
Not Available   
Not Available   

Features
Always found as volcanic pipes over deep continental crust   
Application of acids on the surface causes cloudy frosting, Available in Lots of Colors and Patterns, Dissolves in hydrochloric acid, Is one of the oldest rock   

Archaeological Significance
  
  

Monuments
Used   
Used   

Famous Monuments
Data Not Available   
Data Not Available   

Sculpture
Used   
Used   

Famous Sculptures
Data Not Available   
Data Not Available   

Pictographs
Used   
Used   

Petroglyphs
Used   
Used   

Figurines
Used   
Used   

Fossils
Absent   
Absent   

Formation

Formation
Ignimbrites are formed from very poorly sorted mixture of volcanic ash or tuff and pumice lapilli, commonly with scattered lithic fragments.   
Kenyte is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.   

Composition
  
  

Mineral Content
Apatite, Biotite, Calcite, Chlorite, Feldspar, Hematite, Hornblade, Ilmenite, Magnetite, Olivine, Pyroxene, Quartz   
Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite   

Compound Content
Ca, NaCl   
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide   

Transformation
  
  

Metamorphism
Yes   
Yes   

Types of Metamorphism
Burial Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism   
Burial Metamorphism, Cataclastic Metamorphism, Impact Metamorphism   

Weathering
Yes   
Yes   

Types of Weathering
Biological Weathering, Chemical Weathering   
Biological Weathering   

Erosion
Yes   
Yes   

Types of Erosion
Chemical Erosion, Coastal Erosion   
Chemical Erosion, Coastal Erosion   

Properties

Physical Properties
  
  

Hardness
4-6   
5.5-6   

Grain Size
Fine Grained   
Fine Grained   

Fracture
Uneven   
Conchoidal to Uneven   

Streak
White   
White, Greenish White or Grey   

Porosity
Highly Porous   
Highly Porous   

Luster
Vitreous to Dull   
Greasy to Dull   

Compressive Strength
243.80 N/mm2   
5
150.00 N/mm2   
14

Cleavage
Not Available   
Poor   

Toughness
Not Available   
Not Available   

Specific Gravity
2.73   
2.6   

Transparency
Opaque   
Translucent to Opaque   

Density
1-1.8 g/cm3   
2.6 g/cm3   

Thermal Properties
  
  

Specific Heat Capacity
0.20 kJ/Kg K   
25
Not Available   

Resistance
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant   
Heat Resistant, Impact Resistant, Wear Resistant   

Reserves

Deposits in Eastern Continents
  
  

Asia
Afghanistan, Armenia, Azerbaijan, Burma, Cambodia, China, India, Indonesia, Iran, Japan, Malaysia, Mongolia, Nepal, North Korea, Pakistan, Saudi Arabia, Syria, Taiwan, Thailand, Turkey, Vietnam, Yemen   
Indonesia, Iran, Russia, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Turkmenistan, Vietnam   

Africa
Cameroon, Cape Verde, Chad, Djibouti, Eritrea, Ethiopia, Kenya, Libya, Madagascar, Nigeria, Rwanda, South Africa, Sudan, Tanzania, Uganda   
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa   

Europe
France, Georgia, Germany, Greece, Iceland, Italy, Netherlands, Poland, Portugal, Spain, United Kingdom   
Andorra, Finland, France, Germany, Great Britain, Italy, Norway, Portugal, Spain, Sweden   

Others
Antarctica, Hawaii Islands   
Greenland   

Deposits in Western Continents
  
  

North America
Canada, Costa Rica, Panama, USA   
Canada, USA   

South America
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador   
Brazil, Chile, Colombia, Uruguay, Venezuela   

Deposits in Oceania Continent
  
  

Australia
Central Australia, Western Australia   
New Zealand, Queensland, South Australia, Tasmania, Western Australia   

Definition >>
<< All

Ignimbrite vs Kenyte Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Ignimbrite and Kenyte Reserves. Ignimbrite is a volcanic rock consisting mainly of pumice fragments, formed by the consolidation of material deposited by pyroclastic flows. Kenyte is a variety of porphyritic phonolite or trachyte rock with rhomb shaped phenocrysts of anorthoclase with variable olivine and augite in a glassy matrix. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Ignimbrite vs Kenyte information and Ignimbrite vs Kenyte characteristics in the upcoming sections.

Compare Igneous Rocks

Ignimbrite vs Kenyte Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Ignimbrite vs Kenyte characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Ignimbrite and Properties of Kenyte. Learn more about Ignimbrite vs Kenyte in the next section. The interior uses of Ignimbrite include Decorative aggregates, Floor tiles, Homes and Interior decoration whereas the interior uses of Kenyte include Decorative aggregates, Entryways, Homes, Interior decoration and Kitchens. Due to some exceptional properties of Ignimbrite and Kenyte, they have various applications in construction industry. The uses of Ignimbrite in construction industry include Building houses or walls, Construction aggregate and that of Kenyte include As dimension stone, Cement manufacture, Construction aggregate, For road aggregate, Landscaping, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics.

More about Ignimbrite and Kenyte

Here you can know more about Ignimbrite and Kenyte. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Ignimbrite and Kenyte consists of mineral content and compound content. The mineral content of Ignimbrite includes Apatite, Biotite, Calcite, Chlorite, Feldspar, Hematite, Hornblade, Ilmenite, Magnetite, Olivine, Pyroxene, Quartz and mineral content of Kenyte includes Albite, Amphibole, Biotite, Cancrinite, Feldspar, Hornblende, Plagioclase, Pyroxene, Sodalite. You can also check out the list of all Igneous Rocks. When we have to compare Ignimbrite vs Kenyte, the texture, color and appearance plays an important role in determining the type of rock. Ignimbrite is available in beige, black, brown, grey, pink, white colors whereas, Kenyte is available in brown, buff, cream, green, grey, pink, white colors. Appearance of Ignimbrite is Dull, Vesicular and Foilated and that of Kenyte is Banded and Foilated. Properties of rock is another aspect for Ignimbrite vs Kenyte. The hardness of Ignimbrite is 4-6 and that of Kenyte is 5.5-6. The types of Ignimbrite are Not Available whereas types of Kenyte are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Ignimbrite is white while that of Kenyte is white, greenish white or grey. The specific heat capacity of Ignimbrite is 0.20 kJ/Kg K and that of Kenyte is Not Available. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Ignimbrite is heat resistant, impact resistant, pressure resistant, wear resistant whereas Kenyte is heat resistant, impact resistant, wear resistant.

Igneous Rocks

Igneous Rocks

» More Igneous Rocks

Compare Igneous Rocks

» More Compare Igneous Rocks