×

Icelandite
Icelandite

Granite
Granite



ADD
Compare
X
Icelandite
X
Granite

Icelandite vs Granite

1 Definition
1.1 Definition
Icelandite belongs to volcanic igneous rocks which is rich in iron and belongs to andesite rock
Granite is a very hard, granular, crystalline igneous rock which consists mainly of quartz, mica, and feldspar and is often used as building stone
1.2 History
1.2.1 Origin
Iceland
Unknown
1.2.2 Discoverer
Ian S. E. Carmichael
Unknown
1.3 Etymology
From its origin place near Cenozoic volcano near the parsonage Þingmúli in East Iceland
From Italian granito, which means grained rock, from grano grain, and from Latin granum
1.4 Class
Igneous Rocks
Igneous Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Hard Rock
1.5 Family
1.5.1 Group
Volcanic
Plutonic
1.6 Other Categories
Fine Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Aphanitic to Porphyritic
Granular, Phaneritic
2.2 Color
Bluish - Grey, Grey, Pink, Yellow
Black, Grey, Orange, Pink, White
2.3 Maintenance
More
More
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Dull and Soft
Veined or Pebbled
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Floor Tiles, Homes, Interior Decoration, Kitchens
Countertops, Decorative Aggregates, Entryways, Floor Tiles, Flooring, Homes, Hotels, Interior Decoration, Kitchens, Stair Treads
3.1.2 Exterior Uses
Office Buildings, Roof Tiles
As Building Stone, As Facing Stone, Bridges, Paving Stone, Garden Decoration, Near Swimming Pools, Office Buildings, Resorts
3.1.3 Other Architectural Uses
Curbing
Curbing
3.2 Industry
3.2.1 Construction Industry
Cobblestones, Construction Aggregate, for Road Aggregate
As Dimension Stone
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Jewellery, Sculpture, Small Figurines
Monuments, Sculpture, Small Figurines
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Creating Artwork
Curling, Gemstone, Laboratory bench tops, Tombstones, Used in aquariums
4 Types
4.1 Types
Not Available
Igneous Protolith Granite, Sedimentary Protolith Granite, Mantle Granite, Anorogenic Granite, Hybrid Granite, Granodiorite and Alkali Feldspar Granite
4.2 Features
Generally rough to touch, High silica content, Is one of the oldest rock
Available in Lots of Colors and Patterns, It is One of the Oldest, Strongest and Hardest Rock
4.3 Archaeological Significance
4.3.1 Monuments
Not Yet Used
Used
4.3.2 Famous Monuments
Not Applicable
Agia Sophia in Istanbul, Turkey, Blue Domed Church in Santorini, Greece, Blue Mosque in Istanbul, Charminar in Hyderabad, India, Diana, Princess of Wales Memorial Fountain in London, UK, Ephesus in Turkey, Georgia Guidestones in Georgia, US, Hermitage in Saint Petersburg, Khajuraho Temples, India, Mahabalipuram in Tamil Nadu, India, Mysore Palace in Karnataka, India, Signers Monument in Augusta, Georgia, Statue of Liberty in New York, USA, Taj Mahal in Agra, India, Tower Bridge in London, Vietnam Veterans Memorial in Washington, US, Washington Monument, US
4.3.3 Sculpture
Used
Used
4.3.4 Famous Sculptures
Data Not Available
Avukana Buddha Statue in Sri Lanka, Lincoln Memorial in America, Mount Rushmore National Memorial in South Dakota, US, The Colossal Red Granite Statue of Amenhotep III in Karnak, Egypt
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Used
Used
4.4 Fossils
Absent
Absent
5 Formation
5.1 Formation
Icelandite is a fine-grained, hard rock which is a type of metasomatite, essentially altered basalt. It forms with or without crystallization, either below the surface as intrusive rocks or on the surface as extrusive rocks.
Granite is an intrusive igneous rock which is very hard, crystalline and is visibly homogeneous in texture and forms by melting of continental rocks
5.2 Composition
5.2.1 Mineral Content
Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Ilmenite, Magnetite, Plagioclase, Pyroxene, Quartz, Zircon
Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz
5.2.2 Compound Content
Silicon Dioxide
Aluminium Oxide, CaO, Iron(III) Oxide, FeO, Potassium Oxide, MgO, MnO, Sodium Oxide, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Hydrothermal Metamorphism, Impact Metamorphism, Regional Metamorphism
Burial Metamorphism, Cataclastic Metamorphism
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering
Biological Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Sea Erosion, Water Erosion, Wind Erosion
Chemical Erosion, Sea Erosion, Water Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
76-7
Coal
1 7
6.1.2 Grain Size
Very fine-grained
Large and Coarse Grained
6.1.3 Fracture
Uneven
Not Available
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Vitreous
Dull to Grainy with Sporadic parts Pearly and Vitreous
6.1.7 Compressive Strength
NA175.00 N/mm2
Obsidian
0.15 450
6.1.8 Cleavage
Not Available
Not Available
6.1.9 Toughness
1.1
Not Available
6.1.10 Specific Gravity
2.5-2.82.6-2.7
Marble
0 8.4
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.11-2.36 g/cm32.65-2.75 g/cm3
Lignite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
2.39 kJ/Kg K0.79 kJ/Kg K
Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Scratch Resistant, Wear Resistant
Heat Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
India, Indonesia, Japan, Nepal, South Korea
China, India, Iran, Saudi Arabia, Sri Lanka, Taiwan, Thailand, Turkey, Vietnam
7.1.2 Africa
Egypt, Ethiopia, Morocco, Namibia, South Africa, Tanzania
Angola, Egypt, Madagascar, Namibia, Nigeria, South Africa
7.1.3 Europe
Austria, Finland, Germany, Italy, Romania, Turkey, United Kingdom
Austria, Belgium, Finland, France, Germany, Italy, Norway, Sardinia, Spain, Switzerland, The Czech Republic, Venezuela
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Mexico, USA
Canada, USA
7.2.2 South America
Argentina, Bolivia, Chile, Colombia, Ecuador, Peru, Venezuela
Not Yet Found
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, Western Australia
Not Yet Found

Icelandite vs Granite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Icelandite and Granite Reserves. Icelandite belongs to volcanic igneous rocks which is rich in iron and belongs to andesite rock. Granite is a very hard, granular, crystalline igneous rock which consists mainly of quartz, mica, and feldspar and is often used as building stone. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Icelandite vs Granite information and Icelandite vs Granite characteristics in the upcoming sections.

Icelandite vs Granite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Icelandite vs Granite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Icelandite and Properties of Granite. Learn more about Icelandite vs Granite in the next section. The interior uses of Icelandite include Decorative aggregates, Floor tiles, Homes, Interior decoration and Kitchens whereas the interior uses of Granite include Countertops, Decorative aggregates, Entryways, Floor tiles, Flooring, Homes, Hotels, Interior decoration, Kitchens and Stair treads. Due to some exceptional properties of Icelandite and Granite, they have various applications in construction industry. The uses of Icelandite in construction industry include Cobblestones, Construction aggregate, For road aggregate and that of Granite include As dimension stone.

More about Icelandite and Granite

Here you can know more about Icelandite and Granite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Icelandite and Granite consists of mineral content and compound content. The mineral content of Icelandite includes Amphibole, Apatite, Biotite, Feldspar, Garnet, Hornblade, Ilmenite, Magnetite, Plagioclase, Pyroxene, Quartz, Zircon and mineral content of Granite includes Amphibole, Biotite, Feldspar, Hornblade, Micas, Muscovite or Illite, Plagioclase, Pyroxene, Quartz. You can also check out the list of all Igneous Rocks. When we have to compare Icelandite vs Granite, the texture, color and appearance plays an important role in determining the type of rock. Icelandite is available in bluish - grey, grey, pink, yellow colors whereas, Granite is available in black, grey, orange, pink, white colors. Appearance of Icelandite is Dull and Soft and that of Granite is Veined or Pebbled. Properties of rock is another aspect for Icelandite vs Granite. The hardness of Icelandite is 7 and that of Granite is 6-7. The types of Icelandite are Not Available whereas types of Granite are Igneous Protolith Granite, Sedimentary Protolith Granite, Mantle Granite, Anorogenic Granite, Hybrid Granite, Granodiorite and Alkali Feldspar Granite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Icelandite and Granite is white. The specific heat capacity of Icelandite is 2.39 kJ/Kg K and that of Granite is 0.79 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Icelandite is heat resistant, pressure resistant, scratch resistant, wear resistant whereas Granite is heat resistant, wear resistant.