×

Gneiss
Gneiss

Banded iron formation
Banded iron formation



ADD
Compare
X
Gneiss
X
Banded iron formation

Gneiss vs Banded iron formation

1 Definition
1.1 Definition
Gneiss is a common and widely distributed type of rock formed by high-grade regional metamorphic processes from pre-existing formations that were originally either igneous or sedimentary rocks
Banded iron formation are distinctive units of sedimentary rock that are almost always of Precambrian age
1.2 History
1.2.1 Origin
Unknown
Western Australia, Minnesota
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From the Middle High German verb gneist (to spark; so called because the rock glitters)
From its formation process
1.4 Class
Metamorphic Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Banded, Foliated, Platy
Banded, Trellis
2.2 Color
Black, Brown, Pink, Red, White
Red, Reddish Brown
2.3 Maintenance
More
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
2.4.2 Scratch Resistant
2.4.3 Stain Resistant
2.4.4 Wind Resistant
2.4.5 Acid Resistant
2.5 Appearance
Foliated
Layered, Banded, Veined and Shiny
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Countertops, Decorative Aggregates, Flooring, Interior Decoration
Decorative Aggregates, Homes
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
Paving Stone, Office Buildings
3.1.3 Other Architectural Uses
Curbing
Curbing, Whetstones
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone
As Dimension Stone, Used for flooring, stair treads, borders and window sills.
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Cemetery Markers, Jewelry, Tombstones, Used in aquariums
As a touchstone, Cemetery Markers, Creating Artwork
4 Types
4.1 Types
Augen Gneiss, Henderson Gneiss, Lewisian Gneiss, Archean and Proterozoic Gneiss.
Algoma-type , Lake Superior-type, Superior-type and Taconite
4.2 Features
Generally rough to touch, Is one of the oldest rock
Is one of the oldest rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Konark Sun Temple in India, Washington Monument, US
Not Applicable
4.3.3 Sculpture
Not Yet Used
Not Yet Used
4.3.4 Famous Sculptures
Not Applicable
Not Applicable
4.3.5 Pictographs
Not Used
Not Used
4.3.6 Petroglyphs
Not Used
Not Used
4.3.7 Figurines
Not Yet Used
Not Yet Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Gneiss is a high grade metamorphic rock i.e. it has been subjected to higher temperatures and pressures than schist. It is formed by the metamorphosis of Gneiss forms from volcanic rock, shale or granitie.
The banded iron layers are formed in sea water when oxygen is released by photosynthetic cyano-bacteria. The oxygen then combines with dissolved iron in ocean to form insoluble iron oxides, which precipitated out, forming a thin layer of banded iron formation on ocean floor.
5.2 Composition
5.2.1 Mineral Content
Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon
Hematite, Magnetite, Quartz
5.2.2 Compound Content
Aluminium Oxide, NaCl, CaO, Iron(III) Oxide, FeO, Potassium Oxide, Magnesium Carbonate, MgO, MnO, Phosphorus Pentoxide, Silicon Dioxide, Titanium Dioxide
Fe, Iron(III) Oxide, Silicon Dioxide
5.3 Transformation
5.3.1 Metamorphism
5.3.2 Types of Metamorphism
Impact Metamorphism
Not Applicable
5.3.3 Weathering
5.3.4 Types of Weathering
Biological Weathering, Mechanical Weathering
Chemical Weathering
5.3.5 Erosion
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Sea Erosion
Coastal Erosion, Wind Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
75.5-6
Coal
1 7
6.1.2 Grain Size
Medium to Coarse Grained
Large and Coarse Grained
6.1.3 Fracture
Irregular
Uneven, Splintery or Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Very Less Porous
Highly Porous
6.1.6 Luster
Dull
Earthy
6.1.7 Compressive Strength
125.00 N/mm2NA
Obsidian
0.15 450
6.1.8 Cleavage
Poor
Imperfect
6.1.9 Toughness
1.2
1.5
6.1.10 Specific Gravity
2.5-2.75.0-5.3
Granite
0 8.4
6.1.11 Transparency
Translucent to Opaque
Translucent to Opaque
6.1.12 Density
2.6-2.9 g/cm3Not Available
Granite
0 1400
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
NA3.20 kJ/Kg K
Granulite
0.14 3.2
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Scratch Resistant, Wear Resistant
Heat Resistant, Impact Resistant, Pressure Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India, Iran, Iraq, Kazakhstan, Kyrgyzstan, Mongolia, Russia
China, India, Iran, Iraq, Oman, Russia, Saudi Arabia, Taiwan, Thailand, Vietnam
7.1.2 Africa
Cameroon, Ethiopia, Ghana, Kenya, Madagascar, Morocco, Mozambique, Namibia, Nigeria, Tanzania, Togo
Kenya, Morocco, South Africa, Tanzania
7.1.3 Europe
Albania, Austria, Bosnia and Herzegovina, Finland, France, Georgia, Germany, Hungary, Italy, Kosovo, Monaco, Norway, Poland, Romania, Serbia, Slovakia, Slovenia, Switzerland, Ukraine, United Kingdom
Austria, France, Greece, Italy, Malta, Poland, Portugal, Serbia, Spain, Sweden, United Kingdom
7.1.4 Others
Not Yet Found
Greenland, Mid-Atlantic Ridge
7.2 Deposits in Western Continents
7.2.1 North America
Canada, Costa Rica, Cuba, Mexico, Panama, USA
Canada, Mexico, USA
7.2.2 South America
Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela
Bolivia, Brazil
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, New Zealand, Queensland, Victoria
New South Wales, Queensland, South Australia, Western Australia

Gneiss vs Banded iron formation Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Gneiss and Banded iron formation Reserves. Gneiss is a common and widely distributed type of rock formed by high-grade regional metamorphic processes from pre-existing formations that were originally either igneous or sedimentary rocks. Banded iron formation are distinctive units of sedimentary rock that are almost always of Precambrian age. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Gneiss vs Banded iron formation information and Gneiss vs Banded iron formation characteristics in the upcoming sections.

Gneiss vs Banded iron formation Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Gneiss vs Banded iron formation characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Gneiss and Properties of Banded iron formation. Learn more about Gneiss vs Banded iron formation in the next section. The interior uses of Gneiss include Countertops, Decorative aggregates, Flooring and Interior decoration whereas the interior uses of Banded iron formation include Decorative aggregates and Homes. Due to some exceptional properties of Gneiss and Banded iron formation, they have various applications in construction industry. The uses of Gneiss in construction industry include As dimension stone and that of Banded iron formation include As dimension stone, Used for flooring, stair treads, borders and window sills..

More about Gneiss and Banded iron formation

Here you can know more about Gneiss and Banded iron formation. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Gneiss and Banded iron formation consists of mineral content and compound content. The mineral content of Gneiss includes Biotite, Chlorite, Feldspar, Garnet, Graphite, Hornblade, Micas, Muscovite or Illite, Quartz, Quartzite, Silica, Zircon and mineral content of Banded iron formation includes Hematite, Magnetite, Quartz. You can also check out the list of all Metamorphic Rocks. When we have to compare Gneiss vs Banded iron formation, the texture, color and appearance plays an important role in determining the type of rock. Gneiss is available in black, brown, pink, red, white colors whereas, Banded iron formation is available in red, reddish brown colors. Appearance of Gneiss is Foliated and that of Banded iron formation is Layered, Banded, Veined and Shiny. Properties of rock is another aspect for Gneiss vs Banded iron formation. The hardness of Gneiss is 7 and that of Banded iron formation is 5.5-6. The types of Gneiss are Augen Gneiss, Henderson Gneiss, Lewisian Gneiss, Archean and Proterozoic Gneiss. whereas types of Banded iron formation are Algoma-type , Lake Superior-type, Superior-type and Taconite. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Gneiss and Banded iron formation is white. The specific heat capacity of Gneiss is Not Available and that of Banded iron formation is 3.20 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Gneiss is heat resistant, pressure resistant, scratch resistant, wear resistant whereas Banded iron formation is heat resistant, impact resistant, pressure resistant, wear resistant.