Home
×

Dolomite
Dolomite

Evaporite
Evaporite



ADD
Compare
X
Dolomite
X
Evaporite

Dolomite vs Evaporite

1 Definition
1.1 Definition
Dolomite is a sedimentary rock containing more than 50 percent of the mineral dolomite by weight
A water-soluble mineral sediment resulting from concentration and crystallization by evaporation from an aqueous solution
1.2 History
1.2.1 Origin
Southern Alps, France
USA
1.2.2 Discoverer
Dolomieu
Usiglio
1.3 Etymology
From French, from the name of Dolomieu (1750–1801), the French geologist who discovered the rock
From a sediment left after the evaporation
1.4 Class
Sedimentary Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Medium Hardness Rock
Durable Rock, Soft Rock
1.5 Family
1.5.1 Group
Not Applicable
Not Applicable
1.6 Other Categories
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
Coarse Grained Rock, Fine Grained Rock, Medium Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Earthy
Earthy
2.2 Color
Black, Brown, Colourless, Green, Grey, Pink, White
Colourless, Green, Grey, Silver, White
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
59% Sedimentary Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
62% Sedimentary Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
43% Sedimentary Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
38% Sedimentary Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
22% Sedimentary Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Glassy or Pearly
Glassy, Vesicular and Foilated
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Homes, Interior Decoration
Decorative Aggregates, Entryways, Flooring, Homes, Interior Decoration
3.1.2 Exterior Uses
Garden Decoration, Office Buildings
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Not Yet Used
Curbing
3.2 Industry
3.2.1 Construction Industry
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories, Production of Glass and Ceramics, Serves as an Oil and Gas Reservoir rock
As a Flux in the Production of Steel and Pig Iron, As a Sintering Agent in Steel Industry to process Iron Ore, As Dimension Stone, Cement Manufacture, for Road Aggregate, Making natural cement, Manufacture of Magnesium and Dolomite Refractories
3.2.2 Medical Industry
Taken as a Supplement for Calcium or Magnesium
Taken as a Supplement for Calcium or Magnesium
3.3 Antiquity Uses
Artifacts, Jewellery, Monuments, Sculpture, Small Figurines
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
An Oil and Gas Reservoir, As a Feed Additive for Livestock, Gemstone, Metallurgical Flux, Production of Lime, Soil Conditioner, Source of Magnesia (MgO)
Used in the manufacture of Ceramic Powder, Used in the preparation of Sulfuric Acid and Silicon Diborite
4 Types
4.1 Types
Boninite and Jasperoid
Not Available
4.2 Features
Host Rock for Lead, Traps for subsurface fluids like Oil and Natural Gas., Zinc and Copper Deposits
Generally rough to touch, Splintery, Veined
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Used
Used
4.3.6 Petroglyphs
Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Present
Present
5 Formation
5.1 Formation
Dolomite rocks are originally deposited as calcite or aragonite rich limestone, but during diagenesis process, the calcite or aragonite is transformed into dolomite.
Evaporite is water-soluble mineral sediment which forms from concentration and crystallization by evaporation from an aqueous solution.
5.2 Composition
5.2.1 Mineral Content
Clay Minerals, Pyrite, Quartz, Sulfides
Calcite, Cancrinite, Gypsum, Kyanite, Magnetite
5.2.2 Compound Content
NaCl, CaO, Carbon Dioxide, Magnesium Carbonate, MgO
CaMg(CO3)2, CaO, Calcium Sulfate, KCl, MgO, NaCl
5.3 Transformation
5.3.1 Metamorphism
19% Sedimentary Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism
Burial Metamorphism, Cataclastic Metamorphism, Contact Metamorphism, Impact Metamorphism, Regional Metamorphism
5.3.3 Weathering
78% Sedimentary Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Not Applicable
Not Applicable
5.3.5 Erosion
86% Sedimentary Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Not Applicable
Not Applicable
6 Properties
6.1 Physical Properties
6.1.1 Hardness
3.5-4
2-3
6.1.2 Grain Size
Medium to Fine Coarse Grained
Medium to Fine Coarse Grained
6.1.3 Fracture
Conchoidal
Conchoidal
6.1.4 Streak
White
White
6.1.5 Porosity
Less Porous
Less Porous
6.1.6 Luster
Vitreous and Pearly
Subvitreous to Dull
6.1.7 Compressive Strength
Flint
140.00 N/mm2
Rank: 15 (Overall)
225.00 N/mm2
Rank: 7 (Overall)
Obsidian
ADD ⊕
6.1.8 Cleavage
Perfect
Perfect
6.1.9 Toughness
1
Not Available
6.1.10 Specific Gravity
2.8-3
2.86-2.99
6.1.11 Transparency
Transparent to Translucent
Translucent
6.1.12 Density
2.8-2.9 g/cm3
2.8-2.9 g/cm3
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
Banded iron for..
0.92 kJ/Kg K
Rank: 10 (Overall)
0.92 kJ/Kg K
Rank: 10 (Overall)
Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Pressure Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
China, India
Not Available
7.1.2 Africa
Morocco, Namibia
Not Available
7.1.3 Europe
Austria, Italy, Romania, Spain, Switzerland
United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
Mexico, USA
USA
7.2.2 South America
Brazil, Colombia
Colombia, Paraguay
7.3 Deposits in Oceania Continent
7.3.1 Australia
New South Wales, Queensland, Yorke Peninsula
Central Australia, Western Australia

Dolomite vs Evaporite Information

Earth’s outer layer is covered by rocks and these rocks have different physical and chemical properties. As two rocks are not same, it’s fun to compare them. You can also know more about Dolomite and Evaporite Reserves. Dolomite is a sedimentary rock containing more than 50 percent of the mineral dolomite by weight. A water-soluble mineral sediment resulting from concentration and crystallization by evaporation from an aqueous solution. These rocks are composed of many distinct minerals. The process of formation of rocks is different for various rocks. Rocks are quarried from many years for various purposes. You can check out Dolomite vs Evaporite information and Dolomite vs Evaporite characteristics in the upcoming sections.

Dolomite vs Evaporite Characteristics

Though some rocks look identical, they have certain characteristics which distinguish them from others. Characteristics of rocks include texture, appearance, color, fracture, streak, hardness etc. Dolomite vs Evaporite characteristics assist us to distinguish and recognize rocks. Also you can check about Properties of Dolomite and Properties of Evaporite. Learn more about Dolomite vs Evaporite in the next section. The interior uses of Dolomite include Decorative aggregates, Homes and Interior decoration whereas the interior uses of Evaporite include Decorative aggregates, Entryways, Flooring, Homes and Interior decoration. Due to some exceptional properties of Dolomite and Evaporite, they have various applications in construction industry. The uses of Dolomite in construction industry include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories, Production of glass and ceramics, Serves as an oil and gas reservoir rock and that of Evaporite include As a flux in the production of steel and pig iron, As a sintering agent in steel industry to process iron ore, As dimension stone, Cement manufacture, For road aggregate, Making natural cement, Manufacture of magnesium and dolomite refractories.

More about Dolomite and Evaporite

Here you can know more about Dolomite and Evaporite. The life cycle of a rock consists of formation of rock, composition of rock and transformation of rock. The composition of Dolomite and Evaporite consists of mineral content and compound content. The mineral content of Dolomite includes Clay Minerals, Pyrite, Quartz, Sulfides and mineral content of Evaporite includes Calcite, Cancrinite, Gypsum, Kyanite, Magnetite. You can also check out the list of all Sedimentary Rocks. When we have to compare Dolomite vs Evaporite, the texture, color and appearance plays an important role in determining the type of rock. Dolomite is available in black, brown, colourless, green, grey, pink, white colors whereas, Evaporite is available in colourless, green, grey, silver, white colors. Appearance of Dolomite is Glassy or Pearly and that of Evaporite is Glassy, Vesicular and Foilated. Properties of rock is another aspect for Dolomite vs Evaporite. The hardness of Dolomite is 3.5-4 and that of Evaporite is 2-3. The types of Dolomite are Boninite and Jasperoid whereas types of Evaporite are Not Available. Streak of rock is the color of powder produced when it is dragged across an unweathered surface. The streak of Dolomite and Evaporite is white. The specific heat capacity of Dolomite is 0.92 kJ/Kg K and that of Evaporite is 0.92 kJ/Kg K. Depending on the properties like hardness, toughness, specific heat capacity, porosity etc., rocks are resistant to heat, wear, impact, etc.Dolomite is heat resistant, pressure resistant, wear resistant whereas Evaporite is heat resistant, pressure resistant.