Home
×

Diorite
Diorite

Oolite
Oolite



ADD
Compare
X
Diorite
X
Oolite

Diorite and Oolite

Add ⊕
1 Definition
1.1 Definition
Diorite is a grey to dark-grey intermediate intrusive igneous rock composed principally of plagioclase feldspar,biotite, hornblende, and pyroxene
Oolite is a sedimentary rock formed from ooids, spherical grains which are composed of concentric layers of calcite
1.2 History
1.2.1 Origin
Unknown
Unknown
1.2.2 Discoverer
Unknown
Unknown
1.3 Etymology
From early 19th century coined in French, formed irregularly from Greek diorizein distinguish
From oo- + -lite, after German Oolit. A rock consisting of fine grains of carbonate of lime
1.4 Class
Igneous Rocks
Sedimentary Rocks
1.4.1 Sub-Class
Durable Rock, Hard Rock
Durable Rock, Medium Hardness Rock
1.5 Family
1.5.1 Group
Plutonic
Volcanic
1.6 Other Categories
Coarse Grained Rock, Medium Grained Rock, Opaque Rock
Fine Grained Rock, Opaque Rock
2 Texture
2.1 Texture
Phaneritic
Clastic or Non-Clastic
2.2 Color
Black, Brown, Light to Dark Grey, White
Black, Blue, Brown, Cream, Green, Grey, Pink, Red, Silver, White, Yellow
2.3 Maintenance
Less
Less
2.4 Durability
Durable
Durable
2.4.1 Water Resistant
81% Igneous Rocks Rocks have it !
59% Sedimentary Rocks Rocks have it !
2.4.2 Scratch Resistant
86% Igneous Rocks Rocks have it !
62% Sedimentary Rocks Rocks have it !
2.4.3 Stain Resistant
66% Igneous Rocks Rocks have it !
43% Sedimentary Rocks Rocks have it !
2.4.4 Wind Resistant
49% Igneous Rocks Rocks have it !
38% Sedimentary Rocks Rocks have it !
2.4.5 Acid Resistant
48% Igneous Rocks Rocks have it !
22% Sedimentary Rocks Rocks have it !
2.5 Appearance
Shiny
Rounded and Rough
3 Uses
3.1 Architecture
3.1.1 Interior Uses
Decorative Aggregates, Interior Decoration
Decorative Aggregates, Flooring, Interior Decoration
3.1.2 Exterior Uses
As Building Stone, As Facing Stone, Garden Decoration
As Building Stone, As Facing Stone, Garden Decoration, Paving Stone
3.1.3 Other Architectural Uses
Curbing
Not Yet Used
3.2 Industry
3.2.1 Construction Industry
As Dimension Stone, Cement Manufacture, Cobblestones, Construction Aggregate, for Road Aggregate
Cement Manufacture, Cobblestones, Landscaping
3.2.2 Medical Industry
Not Yet Used
Not Yet Used
3.3 Antiquity Uses
Artifacts, Monuments, Sculpture, Small Figurines
Artifacts
3.4 Other Uses
3.4.1 Commercial Uses
Creating Artwork, Curling
Creating Artwork, Jewelry, Used in aquariums
4 Types
4.1 Types
Not Available
Not Available
4.2 Features
Typically speckled black and white.
Available in lots of colors, Generally rough to touch, Very fine grained rock
4.3 Archaeological Significance
4.3.1 Monuments
Used
Not Yet Used
4.3.2 Famous Monuments
Data Not Available
Not Applicable
4.3.3 Sculpture
Used
Not Yet Used
4.3.4 Famous Sculptures
Data Not Available
Not Applicable
4.3.5 Pictographs
Not Used
Used
4.3.6 Petroglyphs
Not Used
Used
4.3.7 Figurines
Used
Not Yet Used
4.4 Fossils
Absent
Present
5 Formation
5.1 Formation
Diorite is a coarse-grained intrusive igneous rock which contains large interlocking and randomly oriented crystals and forms when molten lava does not reach the Earth’s surface and cools down in the Earth’s crust.
Oolites form when layers of calcite are deposited around a sand grain or fossil piece and are rolled around in calm water, which makes them round.
5.2 Composition
5.2.1 Mineral Content
Albite, Amphibole, Apatite, Biotite, Feldspar, Hornblade, Ilmenite, Magnetite, Muscovite or Illite, Olivine, Plagioclase, Pyroxene, Quartz, Sulfides, Titanite, Zircon
Calcite, Chert, Clay, Dolomite, Quartz, Sand, Silt
5.2.2 Compound Content
Silicon Dioxide
Aluminium Oxide, Ca, NaCl, CaO, Iron(III) Oxide, FeO, MgO
5.3 Transformation
5.3.1 Metamorphism
97% Igneous Rocks Rocks have it !
19% Sedimentary Rocks Rocks have it !
5.3.2 Types of Metamorphism
Cataclastic Metamorphism, Contact Metamorphism, Regional Metamorphism
Not Applicable
5.3.3 Weathering
99% Igneous Rocks Rocks have it !
78% Sedimentary Rocks Rocks have it !
5.3.4 Types of Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
Biological Weathering, Chemical Weathering, Mechanical Weathering
5.3.5 Erosion
92% Igneous Rocks Rocks have it !
86% Sedimentary Rocks Rocks have it !
5.3.6 Types of Erosion
Chemical Erosion, Coastal Erosion, Water Erosion
Chemical Erosion, Coastal Erosion
6 Properties
6.1 Physical Properties
6.1.1 Hardness
6-7
3-4
6.1.2 Grain Size
Medium to Coarse Grained
Fine Grained
6.1.3 Fracture
Not Available
Conchoidal
6.1.4 Streak
Bluish Black
White
6.1.5 Porosity
Very Less Porous
Less Porous
6.1.6 Luster
Shiny
Pearly to Shiny
6.1.7 Compressive Strength
What Is Flint
225.00 N/mm2
Rank: 7 (Overall)
Not Available
Rank: N/A (Overall)
What Is Obsidian
ADD ⊕
6.1.8 Cleavage
Not Available
Non-Existent
6.1.9 Toughness
2.1
1
6.1.10 Specific Gravity
2.8-3
Not Available
6.1.11 Transparency
Opaque
Opaque
6.1.12 Density
2.8-3 g/cm3
Not Available
6.2 Thermal Properties
6.2.1 Specific Heat Capacity
What Is Banded ..
Not Available
Rank: N/A (Overall)
Not Available
Rank: N/A (Overall)
What Is Granulite
ADD ⊕
6.2.2 Resistance
Heat Resistant, Pressure Resistant, Wear Resistant
Heat Resistant, Wear Resistant
7 Reserves
7.1 Deposits in Eastern Continents
7.1.1 Asia
Not Yet Found
Brunei, India, Indonesia, Malaysia, Singapore, Thailand, Vietnam
7.1.2 Africa
Egypt
Cameroon, Chad, Ghana, Kenya, Malawi, Sudan, Tanzania, Togo, Zambia, Zimbabwe
7.1.3 Europe
Finland, Germany, Italy, Romania, Sweden, Turkey, United Kingdom
United Kingdom
7.1.4 Others
Not Yet Found
Not Yet Found
7.2 Deposits in Western Continents
7.2.1 North America
USA
USA
7.2.2 South America
Argentina, Bolivia, Chile, Colombia, Ecuador, Peru
Colombia
7.3 Deposits in Oceania Continent
7.3.1 Australia
New Zealand, Western Australia
Adelaide, New Zealand, Queensland, Tonga, Victoria, Yorke Peninsula

All about Diorite and Oolite Properties

Know all about Diorite and Oolite properties here. All properties of rocks are important as they define the type of rock and its application. Diorite belongs to Igneous Rocks while Oolite belongs to Sedimentary Rocks.Texture of Diorite is Phaneritic whereas that of Oolite is Clastic or Non-Clastic. Diorite appears Shiny and Oolite appears Rounded and Rough. The luster of Diorite is shiny while that of Oolite is pearly to shiny. Diorite is available in black, brown, light to dark grey, white colors whereas Oolite is available in black, blue, brown, cream, green, grey, pink, red, silver, white, yellow colors. The commercial uses of Diorite are creating artwork, curling and that of Oolite are creating artwork, jewelry, used in aquariums.